ترغب بنشر مسار تعليمي؟ اضغط هنا

The equation of state of asymmetric nuclear matter is still controversial, as predictions at subsaturation as well as above normal density widely diverge. We discuss several experimental results measured in heavy-ion collisions with the INDRA array i n the incident energy range 5-80 MeV/nucleon. In particular an estimate of the density dependence of the symmetry energy is derived from isospin diffusion results compared with a transport code: the potential part of the symmetry energy linearly increases with the density. We demonstrate that isospin equilibrium is reached in mid-central collisions for the two reactions Ni+Au at 52 MeV/nucleon and Xe+Sn at 32 MeV/nucleon. New possible variables and an improved modelization to investigate symmetry energy are discussed.
67 - Eric Bonnet 2013
We present an analysis of multifragmentation events observed in central Xe+Sn reactions at Fermi energies. Performing a comparison between the predictions of the Stochastic Mean Field (SMF) transport model and experimental data, we investigate the im pact of the compression-expansion dynamics on the properties of the final reaction products. We show that the amount of radial collective expansion, which characterizes the dynamical stage of the reaction, influences directly the onset of multifragmentation and the kinematic properties of multifragmentation events. For the same set of events we also undertake a shape analysis in momentum space, looking at the degree of stopping reached in the collision, as proposed in recent experimental studies. We show that full stopping is achieved for the most central collisions at Fermi energies. However, considering the same central event selection as in the experimental data, we observe a similar behavior of the stopping power with the beam energy, which can be associated with a change of the fragmentation mechanism, from statistical to prompt fragment emission.
Collisions of Xe+Sn at beam energies of $E/A$ = 8 to 29 $MeV$ and leading to fusion-like heavy residues are studied using the $4pi$ INDRA multidetector. The fusion cross section was measured and shows a maximum at $E/A$ = 18-20 $MeV$. A decomposition into four exit-channels consisting of the number of heavy fragments produced in central collisions has been made. Their relative yields are measured as a function of the incident beam energy. The energy spectra of light charged particles (LCP) in coincidence with the fragments of each exit-channel have been analyzed. They reveal that a composite system is formed, it is highly excited and first decays by emitting light particles and then may breakup into 2- or many- fragments or survives as an evaporative residue. A quantitative estimation of this primary emission is given and compared to the secondary decay of the fragments. These analyses indicate that most of the evaporative LCP precede not only fission but also breakup into several fragments.
Unstable 10C nuclei are produced as quasi-projectiles in 12C+24Mg collisions at E/A = 53 and 95 MeV. The decay of their short-lived states is studied with the INDRA multidetector array via multi-particle correlation functions. The obtained results sh ow that heavy-ion collisions can be used as a tool to access spectroscopic information of unbound states in exotic nuclei, such as their energies and the relative importance of different sequential decay widths.
Cross sections, kinetic energy and angular distributions of fragments with charge 6$le$Z$le$28 emitted in 78,82Kr+40C at 5.5 MeV/A reactions were measured at the GANIL facility using the INDRA apparatus. This experiment aims to investigate the influe nce of the neutron enrichment on the decay mechanism of excited nuclei. Data are discussed in comparison with predictions of transition state and Hauser-Feshbach models.
412 - F. Grenier 2007
Unbound states of $^{10}$C nuclei produced as quasi-projectiles in $^{12}$C+$^{24}$Mg collisions at E/A = 53 and 95 MeV are studied with the Indra detector array. Multi-particle correlation function analyses provide experimental evidence of sequentia l de-excitation mechanisms through the production of intermediate $^{9}$B, $^{6}$Be and $^{8}$Be unbound nuclei. The relative contributions of different decay sequences to the total decay width of the explored states is estimated semi-quantitatively. The obtained results show that heavy-ion collisions can be used as a tool to access spectroscopic information about exotic nuclei.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا