ترغب بنشر مسار تعليمي؟ اضغط هنا

We investigate the regularization-scheme dependence of scattering amplitudes in massless QCD and find that the four-dimensional helicity scheme (FDH) and dimensional reduction (DRED) are consistent at least up to NNLO in the perturbative expansion if renormalization is done appropriately. Scheme dependence is shown to be deeply linked to the structure of UV and IR singularities. We use jet and soft functions defined in soft-collinear effective theory (SCET) to efficiently extract the relevant anomalous dimensions in the different schemes. This result allows us to construct transition rules for scattering amplitudes between different schemes (CDR, HV, FDH, DRED) up to NNLO in massless QCD. We also show by explicit calculation that the hard, soft and jet functions in SCET are regularization-scheme independent.
The $Hto gg$ amplitude relevant for Higgs production via gluon fusion is computed in the four-dimensional helicity scheme (FDH) and in dimensional reduction (DRED) at the two-loop level. The required renormalization is developed and described in deta il, including the treatment of evanescent $epsilon$-scalar contributions. In FDH and DRED there are additional dimension-5 operators generating the $H g g$ vertices, where $g$ can either be a gluon or an $epsilon$-scalar. An appropriate operator basis is given and the operator mixing through renormalization is described. The results of the present paper provide building blocks for further computations, and they allow to complete the study of the infrared divergence structure of two-loop amplitudes in FDH and DRED.
We extend approximate next-to-next-to-leading order results for top-pair production to include the semi-leptonic decays of top quarks in the narrow-width approximation. The new hard-scattering kernels are implemented in a fully differential parton-le vel Monte Carlo that allows for the study of any IR-safe observable constructed from the momenta of the decay products of the top. Our best predictions are given by approximate NNLO corrections in the production matched to a fixed order calculation with NLO corrections in both the production and decay subprocesses. Being fully differential enables us to make comparisons between approximate results derived via different (PIM and 1PI) kinematics for arbitrary distributions. These comparisons reveal that the renormalization-group framework, from which the approximate results are derived, is rather robust in the sense that applying a realistic error estimate allows us to obtain a reliable prediction with a reduced theoretical error for generic observables and analysis cuts.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا