ترغب بنشر مسار تعليمي؟ اضغط هنا

73 - C. D. Weis , A. Schuh , A. Batra 2008
We report on progress in ion placement into silicon devices with scanning probe alignment. The device is imaged with a scanning force microscope (SFM) and an aligned argon beam (20 keV, 36 keV) is scanned over the transistor surface. Holes in the lev er of the SFM tip collimate the argon beam to sizes of 1.6 um and 100 nm in diameter. Ion impacts upset the channel current due to formation of positive charges in the oxide areas. The induced changes in the source-drain current are recorded in dependence of the ion beam position in respect to the FinFET. Maps of local areas responding to the ion beam are obtained.
169 - C. D. Weis , A. Schuh , A. Batra 2008
The ability to inject dopant atoms with high spatial resolution, flexibility in dopant species and high single ion detection fidelity opens opportunities for the study of dopant fluctuation effects and the development of devices in which function is based on the manipulation of quantum states in single atoms, such as proposed quantum computers. We describe a single atom injector, in which the imaging and alignment capabilities of a scanning force microscope (SFM) are integrated with ion beams from a series of ion sources and with sensitive detection of current transients induced by incident ions. Ion beams are collimated by a small hole in the SFM tip and current changes induced by single ion impacts in transistor channels enable reliable detection of single ion hits. We discuss resolution limiting factors in ion placement and processing and paths to single atom (and color center) array formation for systematic testing of quantum computer architectures in silicon and diamond.
We report the detection of single ion impacts through monitoring of changes in the source-drain currents of field effect transistors (FET) at room temperature. Implant apertures are formed in the interlayer dielectrics and gate electrodes of planar, micro-scale FETs by electron beam assisted etching. FET currents increase due to the generation of positively charged defects in gate oxides when ions (121Sb12+, 14+, Xe6+; 50 to 70 keV) impinge into channel regions. Implant damage is repaired by rapid thermal annealing, enabling iterative cycles of device doping and electrical characterization for development of single atom devices and studies of dopant fluctuation effects.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا