ترغب بنشر مسار تعليمي؟ اضغط هنا

Unitarization models describe phenomenologically the high energy behaviour of a strongly interacting symmetry breaking sector. In this work, predictions of some unitarized models in vector boson scattering at LHC are studied and compared with analogo us studies in Equivalent Vector Boson Approximation and previous results for the benchmark no-Higgs scenario. To perform such studies, unitarized model amplitudes have been implemented in the PHANTOM Monte Carlo in a complete calculation with six fermions in the final state.
PHANTOM is a tree level Monte Carlo for six parton final states at proton--proton, proton--antiproton and electron--positron collider at O(alpha_ew^6) and O(alpha_ew^4*alpha_s^2) including possible interferences between the two sets of diagrams. This comprehends all purely electroweak contribution as well as all contributions with one virtual or two external gluons. It can generate unweighted events for any set of processes and it is interfaced to parton shower and hadronization packages via the last Les Houches Accord protocol. It can be used to analyze the physics of boson boson scattering, Higgs boson production in boson boson fusion, t-tbar and three boson production.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا