ﻻ يوجد ملخص باللغة العربية
Unitarization models describe phenomenologically the high energy behaviour of a strongly interacting symmetry breaking sector. In this work, predictions of some unitarized models in vector boson scattering at LHC are studied and compared with analogous studies in Equivalent Vector Boson Approximation and previous results for the benchmark no-Higgs scenario. To perform such studies, unitarized model amplitudes have been implemented in the PHANTOM Monte Carlo in a complete calculation with six fermions in the final state.
In the present work we study the production of vector resonances at the LHC by means of the vector boson scattering $WZ to WZ$ and explore the sensitivities to these resonances for the expected future LHC luminosities. We are assuming that these vect
Vector-boson scattering into two Z bosons at the LHC is a key channel for the exploration of the electroweak sector of the Standard Model. It allows for the full reconstruction of the scattering process but at the price of a huge irreducible backgrou
Vector-boson scattering (VBS) processes probe the innermost structure of electroweak interactions in the Standard Model, and provide a unique sensitivity for new physics phenomena affecting the gauge sector. In this review, we report on the salient a
Boson-boson scattering and Higgs production in boson-boson fusion hold the key to electroweak symmetry breaking. In order to analyze these essential features of the Standard Model we have performed a partonic level study of all processes $q_1 q_2 to
Higgs Effective Field Theory (HEFT) is deployed to study elastic vector-boson scattering at the high LHC energies. The interaction is strong over most of the parameter space, with the minimal Standard Model being a remarkable exception. One-loop HEFT