ترغب بنشر مسار تعليمي؟ اضغط هنا

We report a high-pressure study of orthorhombic rare-earth manganites AMnO3 using Raman scattering (for A = Pr, Nd, Sm, Eu, Tb and Dy) and synchrotron X-ray diffraction (for A = Pr, Sm, Eu, and Dy). In all cases, a structural and insulator-to-metal t ransition was evidenced, with a critical pressure that depends on the A-cation size. We analyze the compression mechanisms at work in the different manganites via the pressure dependence of the lattice parameters, the shear strain in the a-c plane, and the Raman bands associated with out-of-phase MnO6 rotations and in-plane O2 symmetric stretching modes. Our data show a crossover across the rare-earth series between two different kinds of behavior. For the smallest A-cations, the compression is nearly isotropic in the ac plane, with presumably only very slight changes of tilt angles and Jahn-Teller distortion. As the radius of the A-cation increases, the pressure-induced reduction of Jahn-Teller distortion becomes more pronounced and increasingly significant as a compression mechanism, while the pressure-induced bending of octahedra chains becomes conversely less pronounced. We finally discuss our results in the light of the notion of chemical pressure, and show that the analogy with hydrostatic pressure works quite well for manganites with small A-cations but can be misleading with large A-cations.
This work reports on magnetic, dielectric, thermodynamic and magnetoelectric properties of Gd$_{1-x}$Y$_{x}$MnO$_{3}$, with 0 leq x leq 0.4, with emphasis on the (x, T) phase diagram, towards unraveling the role of the driving mechanisms in stabilizi ng both magnetic and ferroelectric orderings. The (x, T) phase diagram reflects the effect of lattice distortions induced by the substitution of $Gd^{3+}$ ion by smaller $Y^{3+}$ ion, which gradually unbalances the antiferromagnetic against the ferromagnetic exchange interactions, enabling the emergence of ferroelectricity for higher concentrations of yttrium. For $x leq 0.1$, the paramagnetic phase is followed by a presumably incommensurate collinear antiferromagnetic phase, then a weak ferromagnetic canted A-type antiferromagnetic ordering is established at lower temperatures.For $0.2 leq x leq 0.4$, a different phase sequence is obtained. The canted A-type antiferromagnetic arrangement is no more stable, and instead a pure antiferromagnetic ordering is stabilized below T$_{lock}$ $approx$ 14 - 17 K, with an improper ferroelectric character. From these results, a cycloid modulated spin arrangement at low temperatures is proposed, accordingly to the inverse Dzyaloshinskii Moriya model. Anomalous temperature dependence of the dipolar relaxation energy and magnetization evidence for structural and magnetic changes occurring at $T* approx 22 - 28 K$, for $0.1 leq x leq 0.4$.
We present an analysis of eclipse timings of the post-common envelope binary NSVS 14256825, which is composed of an sdOB star and a dM star in a close orbit (P_{orb} = 0.110374 days). High-speed photometry of this system was performed between July, 2 010 and August, 2012. Ten new mid-eclipse times were analyzed together with all available eclipse times in the literature. We revisited the (O-C) diagram using a linear ephemeris and verified a clear orbital period variation. On the assumption that these orbital period variations are caused by light travel time effects, the (O-C) diagram can be explained by the presence of two circumbinary bodies, even though this explanation requires a longer baseline of observations to be fully tested. The orbital periods of the best solution would be P_c ~ 3.5 years and P_d ~ 6.9 years. The corresponding projected semi-major axes would be a_c i_c ~ 1.9 AU and a_d i_d ~ 2.9 AU. The masses of the external bodies would be M_c ~ 2.9 M_{Jupiter} and M_d ~ 8.1 M_{Jupiter}, if we assume their orbits are coplanar with the close binary. Therefore NSVS 14256825 might be composed of a close binary with two circumbinary planets, though the orbital period variations is still open to other interpretations.
We present an analysis of UBVR$_{rm C}$I$_{rm C}$JH photometry and phase-resolved optical spectroscopy of NSVS 14256825, an HW Vir type binary. The members of this class consist of a hot subdwarf and a main-sequence low-mass star in a close orbit ($P _{rm orb} ~ 0.1$ d). Using the primary-eclipse timings, we refine the ephemeris for the system, which has an orbital period of 0.11037 d. From the spectroscopic data analysis, we derive the effective temperature, $T_1 = 40000 pm 500$ K, the surface gravity, $log g_1 = 5.50pm0.05$, and the helium abundance, $n(rm He)/n(rm H)=0.003pm0.001$, for the hot component. Simultaneously modelling the photometric and spectroscopic data using the Wilson-Devinney code, we obtain the geometrical and physical parameters of NSVS 14256825. Using the fitted orbital inclination and mass ratio ($i = 82fdg5pm0fdg3$ and $q = M_2/M_1 = 0.260pm0.012$, respectively), the components of the system have $M_1 = 0.419 pm 0.070 M_{odot}$, $R_1 = 0.188 pm 0.010 R_{odot}$, $M_2 = 0.109 pm 0.023 M_{odot}$, and $R_2 = 0.162 pm 0.008 R_{odot}$. From its spectral characteristics, the hot star is classified as an sdOB star.
We present a study of the effect of very high pressure on the orthorhombic perovskite GdMnO3 by Raman spectroscopy and synchrotron x-ray diffraction up to 53.2 GPa. The experimental results yield a structural and insulator-to-metal phase transition c lose to 50 GPa, from an orthorhombic to a metrically cubic structure. The phase transition is of first order with a pressure hysteresis of about 6 GPa. The observed behavior under very high pressure might well be a general feature in rare-earth manganites.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا