ترغب بنشر مسار تعليمي؟ اضغط هنا

A photometric and spectroscopic study of NSVS 14256825: the second sdOB+dM eclipsing binary

321   0   0.0 ( 0 )
 نشر من قبل Leonardo A. Almeida
 تاريخ النشر 2012
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present an analysis of UBVR$_{rm C}$I$_{rm C}$JH photometry and phase-resolved optical spectroscopy of NSVS 14256825, an HW Vir type binary. The members of this class consist of a hot subdwarf and a main-sequence low-mass star in a close orbit ($P_{rm orb} ~ 0.1$ d). Using the primary-eclipse timings, we refine the ephemeris for the system, which has an orbital period of 0.11037 d. From the spectroscopic data analysis, we derive the effective temperature, $T_1 = 40000 pm 500$ K, the surface gravity, $log g_1 = 5.50pm0.05$, and the helium abundance, $n(rm He)/n(rm H)=0.003pm0.001$, for the hot component. Simultaneously modelling the photometric and spectroscopic data using the Wilson-Devinney code, we obtain the geometrical and physical parameters of NSVS 14256825. Using the fitted orbital inclination and mass ratio ($i = 82fdg5pm0fdg3$ and $q = M_2/M_1 = 0.260pm0.012$, respectively), the components of the system have $M_1 = 0.419 pm 0.070 M_{odot}$, $R_1 = 0.188 pm 0.010 R_{odot}$, $M_2 = 0.109 pm 0.023 M_{odot}$, and $R_2 = 0.162 pm 0.008 R_{odot}$. From its spectral characteristics, the hot star is classified as an sdOB star.



قيم البحث

اقرأ أيضاً

We present the new results of our long-term observational project to detect the small variations in the orbital periods of low-mass and short-period eclipsing binaries. About 120 new precise mid-eclipse times were obtained for three relatively well-k nown dwarf eclipsing binaries: SDSS J143547.87+373338.5 (P = 0.126 d), NSVS 07826147 (0.162 d), and NSVS 14256825 (0.110 d). Observed-minus-calculated (O-C) diagrams of these systems were analyzed using all accurate timings, and, where possible, new parameters of the light-time effect were calculated. For the first time, we derive (or improve upon previous findings with regard to) the short orbital periods of 13 and 10 years of possible third bodies for SDSS J143547.87+373338.5 and NSVS 07826147, respectively. In these binaries, our data show that period variations can be modeled simply on the basis of a single circumbinary object. For the first two objects, we calculated the minimum mass of the third components to be 17 MJ, and 1.4 MJ respectively, which corresponds to the mass of a brown dwarf or a giant planet. For NSVS 14256825, the cyclical period changes caused by a single additional body cannot be confirmed by our recent eclipse time measurements. More complex behavior connected with two orbiting bodies, or yet unknown effects, should be taken into account.
Double Periodic Variables (DPV) are among the new enigmas of semi-detached eclipsing binaries. These are intermediate-mass binaries characterized by a long photometric period lasting on average 33 times the orbital period. We present a spectroscopic and photometric study of the DPV V495 Cen based on new high-resolution spectra and the ASAS V-band light curve. We have determined an improved orbital period of $33.492 pm 0.002$ d and a long period of 1283 d. We find a cool evolved star of $M_{2}=0.91pm 0.2 M_{odot}$, $T_{2}= 6000pm 250 K$ and $R_{2}=19.3 pm 0.5 R_{odot}$ and a hot companion of $M_{1}= 5.76pm 0.3 M_{odot}$, $T_{1}=16960pm 400 K$ and $R=4.5pm0.2 R_{odot}$. The mid-type B dwarf is surrounded by a concave and geometrically thick disc, of radial extension $R_{d}= 40.2pm 1.3 R_{odot}$ contributing $sim$ 11 percent to the total luminosity of the system at the V band. The system is seen under inclination $84.!!^{circ}8$ $pm$ $0.!!^{circ}6$ and it is at a distance $d= 2092 pm 104.6$ pc. The light curve analysis suggests that the mass transfer stream impacts the external edge of the disc forming a hot region 11 % hotter than the surrounding disc material. The persistent $V<R$ asymmetry of the H$alpha$ emission suggests the presence of a wind and the detection of a secondary absorption component in He I lines indicates a possible wind origin in the hotspot region.
We present an analysis of eclipse timings of the post-common envelope binary NSVS 14256825, which is composed of an sdOB star and a dM star in a close orbit (P_{orb} = 0.110374 days). High-speed photometry of this system was performed between July, 2 010 and August, 2012. Ten new mid-eclipse times were analyzed together with all available eclipse times in the literature. We revisited the (O-C) diagram using a linear ephemeris and verified a clear orbital period variation. On the assumption that these orbital period variations are caused by light travel time effects, the (O-C) diagram can be explained by the presence of two circumbinary bodies, even though this explanation requires a longer baseline of observations to be fully tested. The orbital periods of the best solution would be P_c ~ 3.5 years and P_d ~ 6.9 years. The corresponding projected semi-major axes would be a_c i_c ~ 1.9 AU and a_d i_d ~ 2.9 AU. The masses of the external bodies would be M_c ~ 2.9 M_{Jupiter} and M_d ~ 8.1 M_{Jupiter}, if we assume their orbits are coplanar with the close binary. Therefore NSVS 14256825 might be composed of a close binary with two circumbinary planets, though the orbital period variations is still open to other interpretations.
Detached eclipsing binaries are remarkable systems to provide accurate fundamental stellar parameters. The fundamental stellar parameters and the metallicity values of stellar systems are needed to deeply understand the stellar evolution and formatio n. In this study, we focus on the detailed spectroscopic and photometric studies of three detached eclipsing binary systems, V372,And, V2080,Cyg, and CF,Lyn to obtain their accurate stellar, atmospheric parameters,and chemical compositions. An analysis of light and radial velocity curves was carried out to derive the orbital and stellar parameters. The disentangled spectra of component stars were obtained for the spectroscopic analysis. Final teff, logg, $xi$, vsini, parameters and the element abundances of component stars were derived by using the spectrum synthesis method. The fundamental stellar parameters were determined with a high certainty for V372,And, V2080,Cyg ($sim$$1-2$%) and with an accuracy for CF,Lyn ($sim$$2-6$%). The evolutionary status of the systems was examined and their ages were obtained. It was found that the component stars of V2080,Cyg have similar iron abundance which is slightly lower than solar iron abundance. Additionally, we showed that the primary component of CF,Lyn exhibits a non-spherical shape with its 80% Roche lobe filling factor. It could be estimated that CF,Lyn will start its first Roche overflow in the next 0.02,Gyr.
283 - X.B. Zhang , L.C. Deng , J.F. Tian 2014
We present a comprehensive photometric study of the pulsating, eclipsing binary OO Dra. Simultaneous B- and V-band photometry of the star was carried out on 14 nights. Revised orbital period and a new ephemeris were derived from the data. The first p hotometric solution of the binary system and the physical parameters of the component stars are determined. It reveals that OO Dra could be a detached system with the less-massive secondary component nearly filling in its Roche lobe. By subtracting the eclipsing light changes from the data, we obtained the intrinsic pulsating light curves of the hotter and massive primary component. Frequency analysis of the residuals light yields two confident pulsation modes in both B- and V-band data with the dominant frequency detected at 41.865 c/d. A brief discussion concerning the evolutionary status and the pulsation nature of the binary system is finally given.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا