ترغب بنشر مسار تعليمي؟ اضغط هنا

We investigate infrared manifestations of the pseudogap in the prototypical cuprate and pnictide superconductors: YBa2Cu3Oy and BaFe2As2 (Ba122) systems. We find remarkable similarities between the spectroscopic features attributable to the pseudogap in these two classes of superconductors. The hallmarks of the pseudogap state in both systems include a weak absorption feature at about 500 cm-1 followed by a featureless continuum between 500 and 1500 cm-1 in the conductivity data and a significant suppression in the scattering rate below 700 - 900 cm-1. The latter result allows us to identify the energy scale associated with the pseudogap $Delta_{PG}$. We find that in the Ba122-based materials the superconductivity-induced changes of the infrared spectra occur in the frequency region below 100 - 200 cm-1, which is much lower than the energy scale of the pseudogap. We performed theoretical analysis of the scattering rate data of the two compounds using the same model which accounts for the effects of the pseudogap and electron-boson coupling. We find that the scattering rate suppression in Ba122-based compounds below $Delta_{PG}$ is solely due to the pseudogap formation whereas the impact of the electron-boson coupling effects is limited to lower frequencies. The magnetic resonance modes used as inputs in our modeling are found to evolve with the development of the pseudogap, suggesting an intimate correlation between the pseudogap and magnetism.
We report on infrared studies of charge dynamics in a prototypical pnictide system: the BaFe2As2 family. Our experiments have identified hallmarks of the pseudogap state in the BaFe2As2 system that mirror the spectroscopic manifestations of the pseud ogap in the cuprates. The magnitude of the infrared pseudogap is in accord with that of the spin-density-wave gap of the parent compound. By monitoring the superconducting gap of both P- and Co-doped compounds, we find that the infrared pseudogap is unrelated to superconductivity. The appearance of the pseudogap is found to correlate with the evolution of the antiferromagnetic fluctuations associated with the spin-density-wave instability. The strong-coupling analysis of infrared data further reveals the interdependence between the magnetism and the pseudogap in the iron pnictides.
We investigate the electronic and structural changes at the nanoscale in vanadium dioxide (VO2) in the vicinity of its thermally driven phase transition. Both electronic and structural changes exhibit phase coexistence leading to percolation. In addi tion, we observe a dichotomy between the local electronic and structural transitions. Nanoscale x-ray diffraction reveals local, non-monotonic switching of the lattice structure, a phenomenon that is not seen in the electronic insulator-to-metal transition mapped by near-field infrared microscopy.
We present a comprehensive infrared spectroscopic study of lattice dynamics in the pnictide parent compound BaFe$_2$As$_2$. In the tetragonal structural phase, we observe the two degenerate symmetry-allowed in-plane infrared active phonon modes. Foll owing the structural transition from the tetragonal to orthorhombic phase, we observe splitting into four non-degenerate phonon modes and a significant phonon strength enhancement. These detailed data allow us to provide a physical explanation for the anomalous phonon strength enhancement as the result of anisotropic conductivity due to Hunds coupling.
We report an infrared optical study of the pnictide high-temperature superconductor BaFe$_{1.84}$Co$_{0.16}$As$_{2}$ and its parent compound BaFe$_{2}$As$_{2}$. We demonstrate that electronic correlations are moderately strong and do not change acros s the spin-density wave transition or with doping. By examining the energy scale and direction of spectral weight transfer, we argue that Hunds coupling emph{J} is the primary mechanism that gives rise to correlations.
We present emph{c} axis infrared optical data on a number of Ba, Sr and Nd-doped cuprates of the La$_{2}$CuO$_{4}$ (La214) series in which we observe significant deviations from the universal Josephson relation linking the normal state transport (DC conductivity $sigma_{DC}$ measured at $T_{c}$) with the superfluid density ($rho_{s}$): $rho_{s}proptosigma_{DC}(T_{c})$. We find the violation of Josephson scaling is associated with striking enhancement of the anisotropy in the superfluid density. The data allows us to link the breakdown of Josephson interlayer physics with the development of magnetic order in the CuO$_2$ planes.
We report a novel aspect of the competition and coexistence between magnetism and superconductivity in the high-$T_{c}$ cuprate La$_{2-x}$Sr$_{x}$CuO$_{4}$ (La214). With a modest magnetic field applied $H parallel c$-axis, we monitored the infrared s ignature of pair tunneling between the CuO$_2$ planes and discovered the complete suppression of interlayer coupling in a series of underdoped La214 single crystals. We find that the in-plane superconducting properties remain intact, in spite of enhanced magnetism in the planes.
The optical/infrared properties of films of vanadium dioxide (VO2) and vanadium sesquioxide (V2O3) have been investigated via ellipsometry and near-normal incidence reflectance measurements from far infrared to ultraviolet frequencies. Significant ch anges occur in the optical conductivity of both VO2 and V2O3 across the metal-insulator transitions at least up to (and possibly beyond) 6 eV. We argue that such changes in optical conductivity and electronic spectral weight over a broad frequency range is evidence of the important role of electronic correlations to the metal-insulator transitions in both of these vanadium oxides. We observe a sharp optical transition with possible final state (exciton) effects in the insulating phase of VO2. This sharp optical transition occurs between narrow a1g bands that arise from the quasi-one-dimensional chains of vanadium dimers. Electronic correlations in the metallic phases of both VO2 and V2O3 lead to reduction of the kinetic energy of the charge carriers compared to band theory values, with paramagnetic metallic V2O3 showing evidence of stronger correlations compared to rutile metallic VO2.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا