ترغب بنشر مسار تعليمي؟ اضغط هنا

On infrared pseudogap in cuprate and pnictide high-temperature superconductors

124   0   0.0 ( 0 )
 نشر من قبل Soonjae Moon
 تاريخ النشر 2014
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We investigate infrared manifestations of the pseudogap in the prototypical cuprate and pnictide superconductors: YBa2Cu3Oy and BaFe2As2 (Ba122) systems. We find remarkable similarities between the spectroscopic features attributable to the pseudogap in these two classes of superconductors. The hallmarks of the pseudogap state in both systems include a weak absorption feature at about 500 cm-1 followed by a featureless continuum between 500 and 1500 cm-1 in the conductivity data and a significant suppression in the scattering rate below 700 - 900 cm-1. The latter result allows us to identify the energy scale associated with the pseudogap $Delta_{PG}$. We find that in the Ba122-based materials the superconductivity-induced changes of the infrared spectra occur in the frequency region below 100 - 200 cm-1, which is much lower than the energy scale of the pseudogap. We performed theoretical analysis of the scattering rate data of the two compounds using the same model which accounts for the effects of the pseudogap and electron-boson coupling. We find that the scattering rate suppression in Ba122-based compounds below $Delta_{PG}$ is solely due to the pseudogap formation whereas the impact of the electron-boson coupling effects is limited to lower frequencies. The magnetic resonance modes used as inputs in our modeling are found to evolve with the development of the pseudogap, suggesting an intimate correlation between the pseudogap and magnetism.



قيم البحث

اقرأ أيضاً

134 - Ling Qin , Jihong Qin , 2014
One of the most essential aspects of cuprate superconductors is a large pseudogap coexisting with a superconducting gap, then some anomalous properties can be understood in terms of the formation of the pseudogap. Within the kinetic energy driven sup erconducting mechanism, the effect of the pseudogap on the infrared response of cuprate superconductors in the superconducting-state is studied. By considering the interplay between the superconducting gap and pseudogap, the electron current-current correlation function is evaluated based on the linear response approach and it then is employed to calculate finite-frequency conductivity. It is shown that in the underdoped and optimally doped regimes, the transfer of the part of the low-energy spectral weight of the conductivity spectrum to the higher energy region to form a midinfrared band is intrinsically associated with the presence of the pseudogap.
Hole-doped cuprate high temperature superconductors have ushered in the modern era of high temperature superconductivity (HTS) and have continued to be at center stage in the field. Extensive studies have been made, many compounds discovered, volumin ous data compiled, numerous models proposed, many review articles written, and various prototype devices made and tested with better performance than their nonsuperconducting counterparts. The field is indeed vast. We have therefore decided to focus on the major cuprate materials systems that have laid the foundation of HTS science and technology and present several simple scaling laws that show the systematic and universal simplicity amid the complexity of these material systems, while referring readers interested in the HTS physics and devices to the review articles. Developments in the field are mostly presented in chronological order, sometimes with anecdotes, in an attempt to share some of the moments of excitement and despair in the history of HTS with readers, especially the younger ones.
By re-examining recently-published data from angle-resolved photoemission spectroscopy we demonstrate that, in the superconducting region of the phase diagram, the pseudogap ground state is an arc metal. This scenario is consistent with results from Raman spectroscopy, specific heat and NMR. In addition, we propose an explanation for the Fermi pockets inferred from quantum oscillations in terms of a pseudogapped bilayer Fermi surface.
We report on infrared studies of charge dynamics in a prototypical pnictide system: the BaFe2As2 family. Our experiments have identified hallmarks of the pseudogap state in the BaFe2As2 system that mirror the spectroscopic manifestations of the pseud ogap in the cuprates. The magnitude of the infrared pseudogap is in accord with that of the spin-density-wave gap of the parent compound. By monitoring the superconducting gap of both P- and Co-doped compounds, we find that the infrared pseudogap is unrelated to superconductivity. The appearance of the pseudogap is found to correlate with the evolution of the antiferromagnetic fluctuations associated with the spin-density-wave instability. The strong-coupling analysis of infrared data further reveals the interdependence between the magnetism and the pseudogap in the iron pnictides.
We use the Nernst effect to delineate the boundary of the pseudogap phase in the temperature-doping phase diagram of cuprate superconductors. New data for the Nernst coefficient $ u(T)$ of YBa$_{2}$Cu$_{3}$O$_{y}$ (YBCO), La$_{1.8-x}$Eu$_{0.2}$Sr$_x$ CuO$_4$ (Eu-LSCO) and La$_{1.6-x}$Nd$_{0.4}$Sr$_x$CuO$_4$ (Nd-LSCO) are presented and compared with previous data including La$_{2-x}$Sr$_x$CuO$_4$ (LSCO). The temperature $T_ u$ at which $ u/T$ deviates from its high-temperature behaviour is found to coincide with the temperature at which the resistivity deviates from its linear-$T$ dependence, which we take as the definition of the pseudogap temperature $T^star$- in agreement with gap opening detected in ARPES data. We track $T^star$ as a function of doping and find that it decreases linearly vs $p$ in all four materials, having the same value in the three LSCO-based cuprates, irrespective of their different crystal structures. At low $p$, $T^star$ is higher than the onset temperature of the various orders observed in underdoped cuprates, suggesting that these orders are secondary instabilities of the pseudogap phase. A linear extrapolation of $T^star(p)$ to $p=0$ yields $T^star(pto 0)simeq T_N(0)$, the Neel temperature for the onset of antiferromagnetic order at $p=0$, suggesting that there is a link between pseudogap and antiferromagnetism. With increasing $p$, $T^star(p)$ extrapolates linearly to zero at $psimeq p_{rm c2}$, the critical doping below which superconductivity emerges at high doping, suggesting that the conditions which favour pseudogap formation also favour pairing. We also use the Nernst effect to investigate how far superconducting fluctuations extend above $T_{rm c}$, as a function of doping, and find that a narrow fluctuation regime tracks $T_{rm c}$, and not $T^star$. This confirms that the pseudogap phase is not a form of precursor superconductivity.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا