ترغب بنشر مسار تعليمي؟ اضغط هنا

We review the present-day methods of mode identification applied to main sequence pulsators focusing on those that make use of multicolour photometry and radial velocity data. The effects which may affect diagnostic properties of these observables ar e discussed. We also raise the problem of identification of high degree modes which can dominate oscillation spectra obtained from space-based projects.
37 - A. A. Pamyatnykh 2008
Findings of a few recent asteroseismic studies of the main-sequence pulsating stars, as performed in Wojciech Dziembowskis group in Warsaw and in Michel Bregers group in Vienna, are briefly presented and discussed. The selected objects are three hybr id pulsators Nu Eridani, 12 Lacertae and Gamma Pegasi, which show both Beta Cephei and SPB type modes, and the Delta Scuti type star 44 Tauri.
The rich oscillation spectra determined for the two stars, Nu Eridani and 12 Lacertae, present an interesting challenge to stellar modelling. The stars are hybrid objects showing a number of modes at frequencies typical for Beta Cep stars but also on e mode at frequency typical for SPB stars. We construct seismic models of these stars considering uncertainties in opacity and element distribution. We also present estimate of the interior rotation rate and address the matter of mode excitation. We use both the OP and OPAL opacity data and find significant difference in the results. Uncertainty in these data remains a major obstacle in precise modelling of the objects and, in particular, in estimating the overshooting distance. We find evidence for significant rotation rate increase between envelope and core in the two stars. Instability of low-frequency g-modes was found in seismic models of Nu Eri built with the OP data, but at frequencies higher than those measured in the star. No such instability was found in models of 12 Lac. We do not have yet a satisfactory explanation for low frequency modes. Some enhancement of opacity in the driving zone is required but we argue that it cannot be achieved by the iron accumulation, as it has been proposed.
We study how rotation affects observable amplitudes of high-order g- and mixed r/g-modes and examine prospects for their detection and identification. Our formalism, which is described in some detail, relies on a nonadiabatic generalization of the tr aditional approximation. Numerical results are presented for a number of unstable modes in a model of SPB star, at rotation rates up to 250 km/s. It is shown that rotation has a large effect on mode visibility in light and in mean radial velocity variations. In most cases, fast rotation impairs mode detectability of g-modes in light variation, as Townsend (2003b) has already noted, but it helps detection in radial velocity variation. The mixed modes, which exist only at sufficiently fast rotation, are also more easily seen in radial velocity. The amplitude ratios and phase differences are strongly dependent on the aspect, the rotational velocity and on the mode. The latter dependence is essential for mode identification.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا