ترغب بنشر مسار تعليمي؟ اضغط هنا

Examples of seismic modelling

38   0   0.0 ( 0 )
 نشر من قبل Alexey A. Pamyatnykh
 تاريخ النشر 2008
  مجال البحث فيزياء
والبحث باللغة English
 تأليف A. A. Pamyatnykh




اسأل ChatGPT حول البحث

Findings of a few recent asteroseismic studies of the main-sequence pulsating stars, as performed in Wojciech Dziembowskis group in Warsaw and in Michel Bregers group in Vienna, are briefly presented and discussed. The selected objects are three hybrid pulsators Nu Eridani, 12 Lacertae and Gamma Pegasi, which show both Beta Cephei and SPB type modes, and the Delta Scuti type star 44 Tauri.

قيم البحث

اقرأ أيضاً

The large-scale magnetic fields detected at the surface of about 10% of hot stars extend into the stellar interior, where they may alter the structure. Deep inner regions of stars are only observable using asteroseismology. Here, we investigated the pulsating magnetic B3.5V star HD43317, inferred its interior properties and assessed whether the dipolar magnetic field with a surface strength of $B_p = 1312 pm 332$G caused different properties compared to those of non-magnetic stars. We analysed the latest version of the stars 150d CoRoT light curve and extracted 35 significant frequencies, 28 of which were determined to be independent and not related to the known surface rotation period of $P_{rm rot} = 0.897673$d. We performed forward seismic modelling based on non-magnetic, non-rotating 1D MESA models and the adiabatic module of the pulsation code GYRE, utilizing a grid-based approach. Our aim was to estimate the stellar mass, age, and convective core overshooting. The GYRE calculations were done for uniform rotation with $P_{rm rot}$. This modelling was able to explain 16 of the 28 frequencies as gravity modes belonging to retrograde modes with $(ell, m) = (1, -1)$ and $(2, -1)$ period spacing patterns and one distinct prograde $(2,2)$ mode. The modelling resulted in a stellar mass $M_{star} = 5.8^{+0.1}_{-0.2}$$mathrm{M_{odot}}$, a central hydrogen mass fraction $X_c = 0.54^{+0.01}_{-0.02}$, and exponential convective core overshooting parameter $f_{rm ov} = 0.004^{+0.014}_{-0.002}$. The low value for $f_{rm ov}$ is compatible with the suppression of near-core mixing due to a magnetic field but the uncertainties are too large to pinpoint such suppression as the sole physical interpretation. $[...]$
We analyse time-series observations from the BRITE-Constellation of the well known $beta$ Cephei type star $theta$ Ophiuchi. Seven previously known frequencies were confirmed and nineteen new frequency peaks were detected. In particular, high-order g modes, typical for the SPB (Slowly Pulsating B-type star) pulsators, are uncovered. These low-frequency modes are also obtained from the 7-year SMEI light curve. If g modes are associated with the primary component of $theta$ Oph, then our discovery allows, as in the case of other hybrid pulsators, to infer more comprehensive information on the internal structure. To this aim we perform in-depth seismic studies involving simultaneous fitting of mode frequencies, reproducing mode instability and adjusting the relative amplitude of the bolometric flux variations. To explain the mode instability in the observed frequency range a significant increase of the mean opacity in the vicinity of the $Z$-bump is needed. Moreover, constraints on mass, overshooting from the convective core and rotation are derived. If the low-frequency modes come from the speckle B5 companion then taking into account the effects of rotation is enough to explain the pulsational mode instability.
Context: Being part of the brightest solar-like stars, and close solar analogues, the 16 Cygni system is of great interest to the scientific community and may provide insight into the past and future evolution of our Sun. It has been observed thoroug hly by the Kepler satellite, which provided us with data of an unprecedented quality. Aims: This paper is the first of a series aiming to extensively characterise the system. We test several choices of micro- and macro-physics to highlight their effects on optimal stellar parameters and provide realistic stellar parameter ranges. Methods: We used a recently developed method, WhoSGlAd, that takes the utmost advantage of the whole oscillation spectrum of solar-like stars by simultaneously adjusting the acoustic glitches and the smoothly varying trend. For each choice of input physics, we computed models which account, at best, for a set of seismic indicators that are representative of the stellar structure and are as uncorrelated as possible. The search for optimal models was carried out through a Levenberg-Marquardt minimisation. First, we found individual optimal models for both stars. We then selected the best candidates to fit both stars while imposing a common age and composition. Results: We computed realistic ranges of stellar parameters for individual stars. We also provide two models of the system regarded as a whole. We were not able to build binary models with the whole set of choices of input physics considered for individual stars as our constraints seem too stringent. We may need to include additional parameters to the optimal model search or invoke non-standard physical processes.
Results of mode identification and seismic modelling of the $beta$ Cep/SBP star 12 Lacertae are presented. Using data on the multi-colour photometry and radial velocity variations, we determine or constrain the mode degree, $ell$, for all pulsational frequencies. Including the effects of rotation, we show that the dominant frequency, $ u_1$, is most likely a pure $ell=1$ mode and the low frequency, $ u_A$, is a dipole retrograde mode. We construct a set of seismic models which fit two pulsational frequencies corresponding to the modes $ell= 0,$ p$_1$ and $ell= 1,$ g$_1$ and reproduce also the complex amplitude of the bolometric flux variations, $f$, for both frequencies simultaneously. Some of these seismic models reproduce also the frequency $ u_A$, as a mode $ell= 1,$ g$_{13}$ or g$_{14}$, and its empirical values of $f$. Moreover, it was possible to find a model fitting the six 12 Lac frequencies (the first five and $ u_A$), only if the rotational splitting was calculated for a velocity of $V_{rm rot}approx 75$ km/s. In the next step, we check the effects of model atmospheres, opacity data, chemical mixture and opacity enhancement. Our results show that the OP tables are preferred and an increase of opacities in the $Z-$bump spoils the concordance of the empirical and theoretical values of $f$.
49 - B. Mosser , E. Michel , R. Samadi 2018
Asteroseismology is a unique tool that can be used to study the interior of stars and hence deliver unique information for the studiy of stellar physics, stellar evolution, and Galactic archaeology. We aim to develop a simple model of the informati on content of asteroseismology and to characterize the ability and precision with which fundamental properties of stars can be estimated for different space missions. We defined and calibrated metrics of the seismic performance. The metrics, expressed by a seismic index ${mathcal{E}$ defined by simple scaling relations, are calculated for an ensemble of stars. We studied the relations between the properties of mission observations, fundamental stellar properties, and the performance index. We also defined thresholds for asteroseismic detection and measurement of different stellar properties We find two regimes of asteroseismic performance: the first where the signal strength is dominated by stellar properties and not by observational noise; and the second where observational properties dominate. Typically, for evolved stars, stellar properties provide the dominant terms in estimating the information content, while main sequence stars fall in the regime where the observational properties, especially stellar magnitude, dominate. We estimate scaling relations to predict ${mathcal{E}$ with an intrinsic scatter of around 21%. Incidentally, the metrics allow us to distinguish stars burning either hydrogen or helium. Our predictions will help identify the nature of the cohort of existing and future asteroseismic observations. In addition, the predicted performance for PLATO will help define optimal observing strategies for defined scientific goals.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا