ترغب بنشر مسار تعليمي؟ اضغط هنا

We show for a simple non-collinear configuration of the atomistic spins (in particular, where one spin is rotated by a finite angle in a ferromagnetic background) that the pairwise energy variation computed in terms of multiple scattering formalism c annot be fully mapped onto a bilinear Heisen- berg spin model even in the lack of spin-orbit coupling. The non-Heisenberg terms induced by the spin-polarized host appear in leading orders in the expansion of the infinitesimal angle variations. However, an Eg-T2g symmetry analysis based on the orbital decomposition of the exchange param- eters in bcc Fe leads to the conclusion that the nearest neighbor exchange parameters related to the T2g orbitals are essentially Heisenberg-like: they do not depend on the spin configuration, and can in this case be mapped onto a Heisenberg spin model even in extreme non-collinear cases.
Temperature-dependent magnetic experiments like pump-probe measurements generated by a pulsed laser have become a crucial technique for switching the magnetization in the picosecond time scale. Apart from having practical implications on the magnetic storage technology, the research field of ultrafast magnetization poses also fundamental physical questions. To correctly describe the time evolution of the atomic magnetic moments under the influence of a temperature-dependent laser pulse, it remains crucial to know if the magnetic material under investigation has magnetic excitation spectrum that is more or less dependent on the magnetic configuration, e.g. as reflected by the temperature dependence of the exchange interactions. In this article, we demonstrate from first-principles theory that the magnetic excitation spectra in Co with fcc, bcc and hcp structures are nearly identical in a wide range of non-collinear magnetic configurations. This is a curious result of a balance between the size of the magnetic moments and the strength of the Heisenberg exchange interactions, that in themselves vary with configuration, but put together in an effective spin Hamiltonian results in a configuration independent effective model. We have used such a Hamiltonian, together with ab-initio calculated damping parameters, to investigate the magnon dispersion relationship as well as the ultrafast magnetisation dynamics of Co and Co-rich CoMn alloys.
By means of first principles calculations we investigate the nature of exchange coupling in ferromagnetic bcc Fe on a microscopic level. Analyzing the basic electronic structure reveals a drastic difference between the $3d$ orbitals of $E_g$ and $T_{ 2g}$ symmetries. The latter ones define the shape of the Fermi surface, while the former ones form weakly-interacting impurity levels. We demonstrate that, as a result of this, in Fe the $T_{2g}$ orbitals participate in exchange interactions, which are only weakly dependent on the configuration of the spin moments and thus can be classified as Heisenberg-like. These couplings are shown to be driven by Fermi surface nesting. In contrast, for the $E_g$ states the Heisenberg picture breaks down, since the corresponding contribution to the exchange interactions is shown to strongly depend on the reference state they are extracted from. Our analysis of the nearest-neighbour coupling indicates that the interactions among $E_g$ states are mainly proportional to the corresponding hopping integral and thus can be attributed to be of double-exchange origin.
63 - Sz. Vajna , E. Simon , A. Szilva 2011
In order to explain the anisotropic Rashba-Bychkov effect observed in several metallic surface-state systems, we use k.p perturbation theory with a simple group-theoretical analysis and construct effective Rashba Hamiltonians for different point grou ps up to third order in the wavenumber. We perform relativistic ab initio calculations for the Bi/Ag(111) ordered surface alloy and from the calculated splitting of the band dispersion we find evidence of the predicted third-order terms. Furthermore, we derive expressions for the corresponding third-order Rashba parameters to provide a simple explanation to the qualitative difference concerning the Rashba-Bychkov splitting of the surface states at Au(111) and Bi/Ag(111).
We investigate the surface Rashba effect for a surface of reduced in-plane symmetry. Formulating a k.p perturbation theory, we show that the Rashba splitting is anisotropic, in agreement with symmetry-based considerations. We show that the anisotropi c Rashba splitting is due to the admixture of bulk states of different symmetry to the surface state, and it cannot be explained within the standard theoretical picture supposing just a normal-to-surface variation of the crystal potential. Performing relativistic ab initio calculations we find a remarkably large Rashba anisotropy for an unreconstructed Au(110) surface that is in the experimentally accessible range.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا