ترغب بنشر مسار تعليمي؟ اضغط هنا

In this paper we analyse the street network of London both in its primary and dual representation. To understand its properties, we consider three idealised models based on a grid, a static random planar graph and a growing random planar graph. Compa ring the models and the street network, we find that the streets of London form a self-organising system whose growth is characterised by a strict interaction between the metrical and informational space. In particular, a principle of least effort appears to create a balance between the physical and the mental effort required to navigate the city.
We introduce and analyze a model of a multi-directed Eulerian network, that is a directed and weighted network where a path exists that passes through all the edges of the network once and only once. Networks of this type can be used to describe info rmation networks such as human language or DNA chains. We are able to calculate the strength and degree distribution in this network and find that they both exhibit a power law with an exponent between 2 and 3. We then analyze the behavior of the accelerated version of the model and find that the strength distribution has a double slope power law behavior. Finally we introduce a non-Eulerian version of the model and find that the statistical topological properties remain unchanged. Our analytical results are compared with numerical simulations.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا