ترغب بنشر مسار تعليمي؟ اضغط هنا

We report detailed dc magnetization, linear and non-linear ac susceptibility measurements on the hole doped disordered cobaltite La$_{0.5}$Ba$_{0.5}$CoO$_3$. Our results show that the magnetically ordered state of the system consists of coexisting no n-ferromagnetic phases along with percolating ferromagnetic-clusters. The percolating ferromagnetic-clusters possibly undergo a 3D Hisenberg like magnetic ordering at the Curie temperature of 202(3) K. In between 202 and 220 K, the linear and non-linear ac susceptibility measurements show the presence of magnetic correlations even when the spontaneous magnetization is zero which indicates the presence of preformed short range magnetic-clusters. The characteristics of these short range magnetic-clusters that exist above Curie temperature are quite distinct than that of Griffiths phase e.g the inverse dc susceptibility exhibits an field independent upward deviation, and the second harmonic of ac susceptibility is non-negative. Below Curie temperature the system exhibit spin-glass like features such as irreversibility in the field cooled and zero field cooled magnetization and frequency dependence in the peak of ac susceptibility. The presence of a spin or cluster -glass like state is ruled out by the absence of field divergence in third harmonic of ac susceptibility and zero field cooled memory. This indicates that the observed spin-glass like features are possibility due to progressive thermal blocking of ferromagnetic-clusters which is further confirmed by the Wohlfarths model of superparamagnetism. The frequency dependence of the peak of ac susceptibility obeys the Vogel-Fulcher law with $tau_0approx 10^{-9}$ s. This together with the existence of an AT line in H-T space indicates the existence of significant inter-cluster interaction among these ferromagnetic-clusters.
We report the effect of field, temperature and thermal history on the time dependence in resistivity and magnetization in the phase separated state of Al doped Pr$_{0.5}$Ca$_{0.5}$MnO$_3$. The rate of time dependence in resistivity is much higher tha n that of magnetization and it exhibits a different cooling field dependence due to percolation effects. Our analysis show that the time dependence in physical properties depends on the phase transition dynamics which can be effectively tuned by variation of temperature, cooling field and metastable phase fraction. The phase transition dynamics can be broadly divided into the arrested and un-arrested regimes, and in the arrested regime, this dynamics is mainly determined by time taken in the growth of critical nuclei. An increase in cooling field and/or temperature shifts this dynamics from arrested to un-arrested regime, and in this regime, this dynamics is determined by thermodynamically allowed rate of formation of critical nuclei which in turn depends on the cooling field and available metastable phase fraction. At a given temperature, a decrease in metastable phase fraction shifts the crossover from arrested to un-arrested regimes towards lower cooling field. It is rather significant that inspite of the metastable phase fraction calculated from resistivity being somewhat off from that of magnetization, their cooling field dependence exhibits a striking similarity which indicate that the dynamics in arrested and un-arrested regimes are so different that it comes out vividly provided that the measurements are done around percolation threshold.
The Shastry-Sutherland model, which consists of a set of spin 1/2 dimers on a 2-dimensional square lattice, is simple and soluble, but captures a central theme of condensed matter physics by sitting precariously on the quantum edge between isolated, gapped excitations and collective, ordered ground states. We compress the model Shastry-Sutherland material, SrCu2(BO3)2, in a diamond anvil cell at cryogenic temperatures to continuously tune the coupling energies and induce changes in state. High-resolution x-ray measurements exploit what emerges as a remarkably strong spin-lattice coupling to both monitor the magnetic behavior and the absence or presence of structural discontinuities. In the low-pressure spin-singlet regime, the onset of magnetism results in an expansion of the lattice with decreasing temperature, which permits a determination of the pressure dependent energy gap and the almost isotropic spin-lattice coupling energies. The singlet-triplet gap energy is suppressed continuously with increasing pressure, vanishing completely by 2 GPa. This continuous quantum phase transition is followed by a structural distortion at higher pressure.
The low cost and high resolution gas-based Multi-gap Resistive Plate Chamber (MRPC) opens a new possibility to find an efficient alternative detector for Time of Flight (TOF) based Positron Emission Tomography, where the sensitivity of the system dep ends largely on the time resolution of the detector. Suitable converters can be used to increase the efficiency of detection of photons from annihilation. In this work, we perform a detailed GEANT4 simulation to optimize the converter thickness thereby improving the efficiency of photon conversion. Also we have developed a Monte Carlo based simulation of MRPC response thereby obtaining the intrinsic time resolution of the detector, making it possible to simulate the final response of MRPC-based systems for PET imaging. The result of the cosmic ray test of a four-gap Bakelite-based MRPC operating in streamer mode is discussed.
133 - A. Banerjee , B. Fauque , K. Izawa 2008
We report on a study of electronic transport in semi-metallic Bi$_{0.96}$Sb$_{0.04}$. At zero field, the system is a very dilute Fermi liquid displaying a T$^{2}$ resistivity with an enhanced prefactor. Quantum oscillations in resistivity as well as in Hall, Nernst and Seebeck responses of the system are detectable and their period quantifies the shrinking of the Fermi surface with antimony doping. For a field along the trigonal axis, the quantum limit was found to occur at a field as low as 3T. An ultraquantum anomaly at twice this field was detected in both charge transport and Nernst response. Its origin appears to lie beyond the one-particle picture and linked to unidentified many-body effects.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا