ﻻ يوجد ملخص باللغة العربية
We report on a study of electronic transport in semi-metallic Bi$_{0.96}$Sb$_{0.04}$. At zero field, the system is a very dilute Fermi liquid displaying a T$^{2}$ resistivity with an enhanced prefactor. Quantum oscillations in resistivity as well as in Hall, Nernst and Seebeck responses of the system are detectable and their period quantifies the shrinking of the Fermi surface with antimony doping. For a field along the trigonal axis, the quantum limit was found to occur at a field as low as 3T. An ultraquantum anomaly at twice this field was detected in both charge transport and Nernst response. Its origin appears to lie beyond the one-particle picture and linked to unidentified many-body effects.
Results of dc magnetization study are presented showing interesting thermomagnetic history effects across the antiferromagnetic to ferromagnetic transition in Ce(Fe$_{0.96}$Al$_{0.04})_2$. Specifically, we observe (i)ZFC/FC irreversibility rising wit
Taking the pseudobinary C15 Laves phase compound Ce(Fe$_{0.96}$Al$_{0.04}$)$_2$ as a paradigm for studying a ferromagnetic to antiferromagnetic phase transition, we present interesting thermomagnetic history effects in magnetotransport as well as mag
Narrow-gap higher mobility semiconducting alloys In_{1-x}Mn_{x}Sb were synthesized in polycrystalline form and their magnetic and transport properties have been investigated. Ferromagnetic response in In_{0.98}Mn_{0.02}Sb was detected by the observat
Quantum materials (QMs) with strong correlation and non-trivial topology are indispensable to next-generation information and computing technologies. Exploitation of topological band structure is an ideal starting point to realize correlated topologi
We have demonstrated the effect of hydrostatic pressure on magnetic and transport properties, and thermal transport properties in electron-doped manganites CaMn$_{1-x}$Sb$_{x}$O$_{3}$. The substitution of Sb$^{5+}$ ion for Mn $^{4+}$site of the paren