No Arabic abstract
We consider the creeping flow of a Newtonian fluid in a hemispherical region. In a domain with spherical, or nearly spherical, geometry, the solution of Stokes equation can be expressed as a series of spherical harmonics. However, the original Lamb solution is not complete when the flow is restricted to a semi-infinite space. The general solution in hemispherical geometry is then constructed explicitly. As an application, we discuss the solutions of Marangoni flows due to a local source at the liquid-air interface.
Surface coatings and patterning technologies are essential for various physicochemical applications. In this Letter, we describe key parameters to achieve uniform particle coatings from binary solutions: First, multiple sequential Marangoni flows, set by solute and surfactant simultaneously, prevent non-uniform particle distributions and continuously mix suspended materials during droplet evaporation. Second, we show the importance of particle-surface interactions that can be established by surface-adsorbed macromolecules. To achieve a uniform deposit in a binary mixture, a small concentration of surfactant and surface-adsorbed polymer (0.05 wt% each) is sufficient, which offers a new physicochemical avenue for control of coatings.
The Stokes equation describes the motion of fluids when inertial forces are negligible compared to viscous forces. In this article, we explore the consequence of parity-violating and non-dissipative (i.e. odd) viscosities on Stokes flows. Parity violating viscosities are coefficients of the viscosity tensor that are not invariant under mirror reflections of space, while odd viscosities are those which do not contribute to dissipation of mechanical energy. These viscosities can occur in systems ranging from synthetic and biological active fluids to magnetised and rotating fluids, in which parity (i.e. mirror reflection) symmetry is broken. We first systematically enumerate all possible parity-violating viscosities compatible with cylindrical symmetry, highlighting their connection to potential microscopic realizations. Then, using a combination of analytical and numerical methods, we analyze the effects of the parity violating viscosities on the Stokeslet solution, flow past a sphere or a bubble, and many-particle sedimentation. In all the cases we analyze parity violating viscosities give rise to an azimuthal flow even when the driving force is along the axis of cylindrical symmetry. For a few sedimenting particles, the azimuthal flow bends the trajectories compared to a traditional Stokes flow. For a cloud of particles, the azimuthal flow impedes the transformation into a torus and the subsequent breakup into smaller parts that would otherwise occur. The presence of azimuthal flows in cylindrically symmetric systems (sphere, bubble, cloud of particles) can serve as a probe for parity-violating viscosities in experimental systems.
Marangoni propulsion is a form of locomotion wherein an asymmetric release of surfactant by a body located at the surface of a liquid leads to its directed motion. We present in this paper a mathematical model for Marangoni propulsion in the viscous regime. We consider the case of a thin rigid circular disk placed at the surface of a viscous fluid and whose perimeter has a prescribed concentration of an insoluble surfactant, to which the rest of its surface is impenetrable. Assuming a linearized equation of state between surface tension and surfactant concentration, we derive analytically the surfactant, velocity and pressure fields in the asymptotic limit of low Capillary, Peclet and Reynolds numbers. We then exploit these results to calculate the Marangoni propulsion speed of the disk. Neglecting the stress contribution from Marangoni flows is seen to over-predict the propulsion speed by 50%.
The incompressible Stokes equations can classically be recast in a boundary integral (BI) representation, which provides a general method to solve low-Reynolds number problems analytically and computationally. Alternatively, one can solve the Stokes equations by using an appropriate distribution of flow singularities of the right strength within the boundary, a method particularly useful to describe the dynamics of long slender objects for which the numerical implementation of the BI representation becomes cumbersome. While the BI approach is a mathematical consequence of the Stokes equations, the singularity method involves making judicious guesses that can only be justified a posteriori. In this paper we use matched asymptotic expansions to derive an algebraically accurate slender-body theory directly from the BI representation able to handle arbitrary surface velocities and surface tractions. This expansion procedure leads to sets of uncoupled linear equations and to a single one-dimensional integral equation identical to that derived by Keller and Rubinow (1976) and Johnson (1979) using the singularity method. Hence we show that it is a mathematical consequence of the BI approach that the leading-order flow around a slender body can be represented using a distribution of singularities along its centreline. Furthermore when derived from either the single-layer or double-layer modified BI representation, general slender solutions are only possible in certain types of flow, in accordance with the limitations of these representations.
Eutectic gallium-indium (EGaIn), a room-temperature liquid metal alloy, has the largest tension of any liquid at room temperature, and yet can nonetheless undergo fingering instabilities. This effect arises because, under an applied voltage, oxides deposit on the surface of the metal, which leads to a lowering of the interfacial tension, allowing spreading under gravity. Understanding the spreading dynamics of room temperature liquid metals is important for developing soft electronics and understanding fluid dynamics of liquids with extreme surface tensions. When the applied voltage or the oxidation rate becomes too high, the EGaIn undergoes fingering instabilities, including tip-splitting, which occur due to a Marangoni stress on the interface. Our experiments are performed with EGaIn droplets placed in an electrolyte (sodium hydroxide); by placing the EGaIn on copper electrodes, which EGaIn readily wets, we are able to control the initial width of EGaIn fingers, setting the initial conditions of the spreading. Two transitions are observed: (1) a minimum current density at which all fingers become unstable to narrower fingers; (2) a current density at which the wider fingers undergo a single splitting event into two narrower fingers. We present a phase diagram as a function of current density and initial finger width, and identify the minimum width below which the single tip-splitting does not occur.