No Arabic abstract
Marangoni propulsion is a form of locomotion wherein an asymmetric release of surfactant by a body located at the surface of a liquid leads to its directed motion. We present in this paper a mathematical model for Marangoni propulsion in the viscous regime. We consider the case of a thin rigid circular disk placed at the surface of a viscous fluid and whose perimeter has a prescribed concentration of an insoluble surfactant, to which the rest of its surface is impenetrable. Assuming a linearized equation of state between surface tension and surfactant concentration, we derive analytically the surfactant, velocity and pressure fields in the asymptotic limit of low Capillary, Peclet and Reynolds numbers. We then exploit these results to calculate the Marangoni propulsion speed of the disk. Neglecting the stress contribution from Marangoni flows is seen to over-predict the propulsion speed by 50%.
We present here a comprehensive derivation for the speed of a small bottom-heavy sphere forced by a transverse acoustic field and thereby establish how density inhomogeneities may play a critical role in acoustic propulsion. The sphere is trapped at the pressure node of a standing wave whose wavelength is much larger than the sphere diameter. Due to its inhomogeneous density, the sphere oscillates in translation and rotation relative to the surrounding fluid. The perturbative flows induced by the spheres rotation and translation are shown to generate a rectified inertial flow responsible for a net mean force on the sphere that is able to propel the particle within the zero-pressure plane. To avoid an explicit derivation of the streaming flow, the propulsion speed is computed exactly using a suitable version of the Lorentz reciprocal theorem. The propulsion speed is shown to scale as the inverse of the viscosity, the cube of the amplitude of the acoustic field and is a non trivial function of the acoustic frequency. Interestingly, for some combinations of the constitutive parameters (fluid to solid density ratio, moment of inertia and centroid to center of mass distance), the direction of propulsion is reversed as soon as the frequency of the forcing acoustic field becomes larger than a certain threshold. The results produced by the model are compatible with both the observed phenomenology and the orders of magnitude of the measured velocities.
Slender-body approximations have been successfully used to explain many phenomena in low-Reynolds number fluid mechanics. These approximations typically use a line of singularity solutions to represent the flow. These singularities can be difficult to implement numerically because they diverge at their origin. Hence people have regularized these singularities to overcome this issue. This regularization blurs the force over a small blob therefore removing the divergent behaviour. However it is unclear how best to regularize the singularities to minimize errors. In this paper we investigate if a line of regularized Stokeslets can describe the flow around a slender body. This is achieved by comparing the asymptotic behaviour of the flow from the line of regularized Stokeslets with the results from slender-body theory. We find that the flow far from the body can be captured if the regularization parameter is proportional to the radius of the slender body. This is consistent with what is assumed in numerical simulations and provides a choice for the proportionality constant. However more stringent requirements must be placed on the regularization blob to capture the near field flow outside a slender body. This inability to replicate the local behaviour indicates that many regularizations cannot satisfy the non-slip boundary conditions on the bodies surface to leading order, with one of the most commonly used regularizations showing an angular dependency of velocity along any cross section. This problem can be overcome with compactly supported blobs { and we construct one such example blob which could be effectively used to simulate the flow around a slender body
The geometric phase techniques for swimming in viscous flows express the net displacement of a swimmer as a path integral of a field in configuration space. This representation can be transformed into an area integral for simple swimmers using Stokes theorem. Since this transformation applies for any loop, the integrand of this area integral can be used to help design these swimmers. However, the extension of this Stokes theorem technique to more complicated swimmers is hampered by problems with variables that do not commute and by how to visualise and understand the higher dimensional spaces. In this paper, we develop a treatment for each of these problems, thereby allowing the displacement of general swimmers in any environment to be designed and understood similarly to simple swimmers. The net displacement arising from non-commuting variables is tackled by embedding the integral into a higher dimensional space, which can then be visualised through a suitability constructed surface. These methods are developed for general swimmers and demonstrated on {three} benchmark examples: Purcells two-hinged swimmer, an axisymmetric squirmer in free space {and an axisymmetric squirmer approaching a free interface}. We show in particular that for swimmers with more than two modes of deformation, there exists an infinite set of strokes that generate each net displacement. Hence, in the absence of additional restrictions, general microscopic swimmers do not have a single stroke that maximises their displacement.
The viscous drag on a slender rod by a wall is important to many biological and industrial systems. This drag critically depends on the separation between the rod and the wall and can be approximated asymptotically in specific regimes, namely far from, or very close to, the wall, but is typically determined numerically for general separations. In this note we determine an asymptotic representation of the local drag for a slender rod parallel to a wall which is valid for all separations. This is possible through matching the behaviour of a rod close to the wall and a rod far from the wall. We show that the leading order drag in both these regimes has been known since 1981 and that they can used to produce a composite representation of the drag which is valid for all separations. This is in contrast to a sphere above a wall, where no simple uniformly valid representation exists. We estimate the error on this composite representation as the separation increases, discuss how the results could be used as resistive-force theory and demonstrate their use on a two-hinged swimmer above a wall.
Eutectic gallium-indium (EGaIn), a room-temperature liquid metal alloy, has the largest tension of any liquid at room temperature, and yet can nonetheless undergo fingering instabilities. This effect arises because, under an applied voltage, oxides deposit on the surface of the metal, which leads to a lowering of the interfacial tension, allowing spreading under gravity. Understanding the spreading dynamics of room temperature liquid metals is important for developing soft electronics and understanding fluid dynamics of liquids with extreme surface tensions. When the applied voltage or the oxidation rate becomes too high, the EGaIn undergoes fingering instabilities, including tip-splitting, which occur due to a Marangoni stress on the interface. Our experiments are performed with EGaIn droplets placed in an electrolyte (sodium hydroxide); by placing the EGaIn on copper electrodes, which EGaIn readily wets, we are able to control the initial width of EGaIn fingers, setting the initial conditions of the spreading. Two transitions are observed: (1) a minimum current density at which all fingers become unstable to narrower fingers; (2) a current density at which the wider fingers undergo a single splitting event into two narrower fingers. We present a phase diagram as a function of current density and initial finger width, and identify the minimum width below which the single tip-splitting does not occur.