Do you want to publish a course? Click here

Marangoni Fingering Instabilities in Oxidizing Liquid Metals

106   0   0.0 ( 0 )
 Added by Keith Hillaire
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

Eutectic gallium-indium (EGaIn), a room-temperature liquid metal alloy, has the largest tension of any liquid at room temperature, and yet can nonetheless undergo fingering instabilities. This effect arises because, under an applied voltage, oxides deposit on the surface of the metal, which leads to a lowering of the interfacial tension, allowing spreading under gravity. Understanding the spreading dynamics of room temperature liquid metals is important for developing soft electronics and understanding fluid dynamics of liquids with extreme surface tensions. When the applied voltage or the oxidation rate becomes too high, the EGaIn undergoes fingering instabilities, including tip-splitting, which occur due to a Marangoni stress on the interface. Our experiments are performed with EGaIn droplets placed in an electrolyte (sodium hydroxide); by placing the EGaIn on copper electrodes, which EGaIn readily wets, we are able to control the initial width of EGaIn fingers, setting the initial conditions of the spreading. Two transitions are observed: (1) a minimum current density at which all fingers become unstable to narrower fingers; (2) a current density at which the wider fingers undergo a single splitting event into two narrower fingers. We present a phase diagram as a function of current density and initial finger width, and identify the minimum width below which the single tip-splitting does not occur.



rate research

Read More

Marangoni propulsion is a form of locomotion wherein an asymmetric release of surfactant by a body located at the surface of a liquid leads to its directed motion. We present in this paper a mathematical model for Marangoni propulsion in the viscous regime. We consider the case of a thin rigid circular disk placed at the surface of a viscous fluid and whose perimeter has a prescribed concentration of an insoluble surfactant, to which the rest of its surface is impenetrable. Assuming a linearized equation of state between surface tension and surfactant concentration, we derive analytically the surfactant, velocity and pressure fields in the asymptotic limit of low Capillary, Peclet and Reynolds numbers. We then exploit these results to calculate the Marangoni propulsion speed of the disk. Neglecting the stress contribution from Marangoni flows is seen to over-predict the propulsion speed by 50%.
Marangoni instabilities can emerge when a liquid interface is subjected to a concentration or temperature gradient. It is generally believed that for these instabilities bulk effects like buoyancy are negligible as compared to interfacial forces, especially on small scales. Consequently, the effect of a stable stratification on the Marangoni instability has hitherto been ignored. Here we report, for an immiscible drop immersed in a stably stratified ethanol-water mixture, a new type of oscillatory solutal Marangoni instability which is triggered once the stratification has reached a critical value. We experimentally explore the parameter space spanned by the stratification strength and the drop size and theoretically explain the observed crossover from levitating to bouncing by balancing the advection and diffusion around the drop. Finally, the effect of the stable stratification on the Marangoni instability is surprisingly amplified in confined geometries, leading to an earlier onset.
In this paper, the interfacial motion between two immiscible viscous fluids in the confined geometry of a Hele-Shaw cell is studied. We consider the influence of a thin wetting film trailing behind the displaced fluid, which dynamically affects the pressure drop at the fluid-fluid interface by introducing a nonlinear dependence on the interfacial velocity. In this framework, two cases of interest are analyzed: The injection-driven flow (expanding evolution), and the lifting plate flow (shrinking evolution). In particular, we investigate the possibility of controlling the development of fingering instabilities in these two different Hele-Shaw setups when wetting effects are taken into account. By employing linear stability theory, we find the proper time-dependent injection rate $Q(t)$ and the time-dependent lifting speed ${dot b}(t)$ required to control the number of emerging fingers during the expanding and shrinking evolution, respectively. Our results indicate that the consideration of wetting leads to an increase in the magnitude of $Q(t)$ [and ${dot b}(t)$] in comparison to the non-wetting strategy. Moreover, a spectrally accurate boundary integral approach is utilized to examine the validity and effectiveness of the controlling protocols at the fully nonlinear regime of the dynamics and confirms that the proposed injection and lifting schemes are feasible strategies to prescribe the morphologies of the resulting patterns in the presence of the wetting film.
178 - G. Koleski , T. Bickel 2021
We consider the creeping flow of a Newtonian fluid in a hemispherical region. In a domain with spherical, or nearly spherical, geometry, the solution of Stokes equation can be expressed as a series of spherical harmonics. However, the original Lamb solution is not complete when the flow is restricted to a semi-infinite space. The general solution in hemispherical geometry is then constructed explicitly. As an application, we discuss the solutions of Marangoni flows due to a local source at the liquid-air interface.
Surface coatings and patterning technologies are essential for various physicochemical applications. In this Letter, we describe key parameters to achieve uniform particle coatings from binary solutions: First, multiple sequential Marangoni flows, set by solute and surfactant simultaneously, prevent non-uniform particle distributions and continuously mix suspended materials during droplet evaporation. Second, we show the importance of particle-surface interactions that can be established by surface-adsorbed macromolecules. To achieve a uniform deposit in a binary mixture, a small concentration of surfactant and surface-adsorbed polymer (0.05 wt% each) is sufficient, which offers a new physicochemical avenue for control of coatings.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا