Do you want to publish a course? Click here

A quantum-enhanced wide-field phase imager

115   0   0.0 ( 0 )
 Added by Robin Camphausen
 Publication date 2021
  fields Physics
and research's language is English




Ask ChatGPT about the research

Quantum techniques can be used to enhance the signal-to-noise ratio in optical imaging. Leveraging the latest advances in single photon avalanche diode array cameras and multi-photon detection techniques, here we introduce a super-sensitive phase imager, which uses space-polarization hyper-entanglement to operate over a large field-of-view without the need of scanning operation. We show quantum-enhanced imaging of birefringent and non-birefringent phase samples over large areas, with sensitivity improvements over equivalent classical measurements carried out with equal number of photons. The practical applicability is demonstrated by imaging a biomedical protein microarray sample. Our quantum-enhanced phase imaging technology is inherently scalable to high resolution images, and represents an essential step towards practical quantum imaging.



rate research

Read More

Using a gradient echo memory, we experimentally demonstrate cross phase modulation (XPM) between two optical pulses; one stored and one freely propagating through the memory medium. We explain how this idea can be extended to enable substantial nonlinear interaction between two single photons that are both stored in the memory. We present semi-classical and quantum simulations along with a proposed experimental scheme to demonstrate the feasibility of achieving large XPM at single photon level.
Quantum resources can enhance the sensitivity of a device beyond the classical shot noise limit and, as a result, revolutionize the field of metrology through the development of quantum-enhanced sensors. In particular, plasmonic sensors, which are widely used in biological and chemical sensing applications, offer a unique opportunity to bring such an enhancement to real-life devices. Here, we use bright entangled twin beams to enhance the sensitivity of a plasmonic sensor used to measure local changes in refractive index. We demonstrate a 56% quantum enhancement in the sensitivity of state-of-the-art plasmonic sensor with measured sensitivities on the order of $10^{-10}$RIU$/sqrt{textrm{Hz}}$, nearly 5 orders of magnitude better than previous proof-of-principle implementations of quantum-enhanced plasmonic sensors. These results promise significant enhancements in ultratrace label free plasmonic sensing and will find their way into areas ranging from biomedical applications to chemical detection.
We present a prescription to correct large-scale intensity variations affecting imaging data taken with the Wide Field Imager (WFI) at the MPG/ESO 2.2 m telescope at the European Southern Observatory at La Silla in Chile. Such smoothly varying, large-scale gradients are primarily caused by non-uniform illumination due to stray light, which cannot be removed using standard flatfield procedures. By comparing our observations to the well-calibrated, homogeneous multi-colour photometry from the Sloan Digital Sky Survey we characterise the intensity gradients across the camera by second-order polynomials. The application of these polynomials to our data removes the gradients and reduces the overall scatter. We also demonstrate that applying our correction to an independent WFI dataset significantly reduces its large-scale variations, indicating that our prescription provides a generally valid and simple tool for calibrating WFI photometry.
Quantum enhanced microscopy allows for measurements at high sensitivities and low damage. Recently, multi-pass microscopy was introduced as such a scheme, exploiting the sensitivity enhancement offered by multiple photon-sample interactions. Here we theoretically and numerically compare three different contrast enhancing techniques that are all based on self-imaging cavities: CW cavity enhanced microscopy, cavity ring-down microscopy and multi-pass microscopy. We show that all three schemes can lead to sensitivities beyond the standard quantum limit.
Quantum states of light can enable sensing configurations with sensitivities beyond the shot-noise limit (SNL). In order to better take advantage of available quantum resources and obtain the maximum possible sensitivity, it is necessary to determine fundamental sensitivity limits for different possible configurations for a given sensing system. Here, due to their wide applicability, we focus on optical resonance sensors, which detect a change in a parameter of interest through a resonance shift. We compare their fundamental sensitivity limits set by the quantum Cramer-Rao bound (QCRB) based on the estimation of changes in transmission or phase of a probing bright two-mode squeezed state (bTMSS) of light. We show that the fundamental sensitivity results from an interplay between the QCRB and the transfer function of the system. As a result, for a resonance sensor with a Lorentzian lineshape a phase-based scheme outperforms a transmission-based one for most of the parameter space; however, this is not the case for lineshapes with steeper slopes, such as higher order Butterworth lineshapes. Furthermore, such an interplay results in conditions under which the phase-based scheme provides a higher sensitivity than the transmission-based one but a smaller degree of quantum enhancement. We also study the effect of losses external to the sensor on the degree of quantum enhancement and show that for certain conditions probing with a classical state can provide a higher sensitivity than probing with a bTMSS. Finally, we discuss detection schemes, namely optimized intensity-difference and optimized homodyne detection, that can achieve the fundamental sensitivity limits even in the presence of external losses.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا