Do you want to publish a course? Click here

Fundamental Sensitivity Bounds for Quantum Enhanced Optical Resonance Sensors Based on Transmission and Phase Estimation

72   0   0.0 ( 0 )
 Added by Alberto Marino
 Publication date 2021
  fields Physics
and research's language is English




Ask ChatGPT about the research

Quantum states of light can enable sensing configurations with sensitivities beyond the shot-noise limit (SNL). In order to better take advantage of available quantum resources and obtain the maximum possible sensitivity, it is necessary to determine fundamental sensitivity limits for different possible configurations for a given sensing system. Here, due to their wide applicability, we focus on optical resonance sensors, which detect a change in a parameter of interest through a resonance shift. We compare their fundamental sensitivity limits set by the quantum Cramer-Rao bound (QCRB) based on the estimation of changes in transmission or phase of a probing bright two-mode squeezed state (bTMSS) of light. We show that the fundamental sensitivity results from an interplay between the QCRB and the transfer function of the system. As a result, for a resonance sensor with a Lorentzian lineshape a phase-based scheme outperforms a transmission-based one for most of the parameter space; however, this is not the case for lineshapes with steeper slopes, such as higher order Butterworth lineshapes. Furthermore, such an interplay results in conditions under which the phase-based scheme provides a higher sensitivity than the transmission-based one but a smaller degree of quantum enhancement. We also study the effect of losses external to the sensor on the degree of quantum enhancement and show that for certain conditions probing with a classical state can provide a higher sensitivity than probing with a bTMSS. Finally, we discuss detection schemes, namely optimized intensity-difference and optimized homodyne detection, that can achieve the fundamental sensitivity limits even in the presence of external losses.



rate research

Read More

Quantum metrology enables estimation of optical phase shifts with precision beyond the shot-noise limit. One way to exceed this limit is to use squeezed states, where the quantum noise of one observable is reduced at the expense of increased quantum noise for its complementary partner. Because shot-noise limits the phase sensitivity of all classical states, reduced noise in the average value for the observable being measured allows for improved phase sensitivity. However, additional phase sensitivity can be achieved using phase estimation strategies that account for the full distribution of measurement outcomes. Here we experimentally investigate the phase sensitivity of a five-particle optical spin-squeezed state generated by photon subtraction from a parametric downconversion photon source. The Fisher information for all photon-number outcomes shows it is possible to obtain a quantum advantage of 1.58 compared to the shot-noise limit, even though due to experimental imperfection, the average noise for the relevant spin-observable does not achieve sub-shot-noise precision. Our demonstration implies improved performance of spin squeezing for applications to quantum metrology.
83 - Juan Yu , Yue Qin , Jinliang Qin 2020
Quantum phase estimation protocols can provide a measuring method of phase shift with precision superior to standard quantum limit (SQL) due to the application of a nonclassical state of light. A squeezed vacuum state, whose variance in one quadrature is lower than the corresponding SQL, has been pointed out a sensitive resource for quantum phase estimation and the estimation accuracy is directly influenced by the properties of the squeezed state. Here we detailedly analyze the influence of the purity and squeezing level of the squeezed state on the accuracy of quantum phase estimation. The maximum precision that can be achieved for a squeezed thermal state is evaluated, and the experimental results are in agreement with the theoretical analyses. It is also found that the width of the phase estimation interval $Delta theta $ beyond SQL is correlated with the purity of the squeezed state.
Unitary Fourier transform lies at the core of the multitudinous computational and metrological algorithms. Here we show experimentally how the unitary Fourier transform-based phase estimation protocol, used namely in quantum metrology, can be translated into the classical linear optical framework. The developed setup made of beam splitters, mirrors and phase shifters demonstrates how the classical coherence, similarly to the quantum coherence, poses a resource for obtaining information about the measurable physical quantities. Our study opens route to the reliable implementation of the small-scale unitary algorithms on path-encoded qudits, thus establishing an easily accessible platform for unitary computation.
We investigate the use of twin-mode quantum states of light with symmetric statistical features in their photon number for improving intensity-sensitive surface plasmon resonance (SPR) sensors. For this purpose, one of the modes is sent into a prism setup where the Kretschmann configuration is employed as a sensing platform and the analyte to be measured influences the SPR excitation conditions. This influence modifies the output state of light that is subsequently analyzed by an intensity-difference measurement scheme. We show that quantum noise reduction is achieved not only as a result of the sub-Poissonian statistical nature of a single mode, but also as a result of the non-classical correlation of the photon number between the two modes. When combined with the high sensitivity of the SPR sensor, we show that the use of twin-mode quantum states of light notably enhances the estimation precision of the refractive index of an analyte. With this we are able to identify a clear strategy to further boost the performance of SPR sensors, which are already a mature technology in biochemical and medical sensing applications.
Nuclear magnetic resonance is a promising experimental approach to search for ultra-light axion-like dark matter. Searches such as the cosmic axion spin-precession experiments (CASPEr) are ultimately limited by quantum-mechanical noise sources, in particular, spin-projection noise. We discuss how such fundamental limits can potentially be reached. We consider a circuit model of a magnetic resonance experiment and quantify three noise sources: spin-projection noise, thermal noise, and amplifier noise. Calculation of the total noise spectrum takes into account the modification of the circuit impedance by the presence of nuclear spins, as well as the circuit back-action on the spin ensemble. Suppression of the circuit back-action is especially important in order for the spin-projection noise limits of searches for axion-like dark matter to reach the quantum chromodynamic axion sensitivity.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا