Do you want to publish a course? Click here

Hyperbolic metrics on open subsests of Ptolemaic spaces with sharp parameter bounds

297   0   0.0 ( 0 )
 Added by Neil Katz
 Publication date 2020
  fields
and research's language is English
 Authors Neil N. Katz




Ask ChatGPT about the research

It is shown that a construction of Z. Zhang and Y. Xiao on open subsets of Ptolemaic spaces yields, when the subset has boundary containing at least two points, metrics that are Gromov hyperbolic with parameter $log 2$ and strongly hyperbolic with parameter $1$ with no further conditions on the open set. A class of examples is constructed on Hadamard manifolds showing these estimates of the parameters are sharp.



rate research

Read More

Given a domain $G subsetneq Rn$ we study the quasihyperbolic and the distance ratio metrics of $G$ and their connection to the corresponding metrics of a subdomain $D subset G$. In each case, distances in the subdomain are always larger than in the original domain. Our goal is to show that, in several cases, one can prove a stronger domain monotonicity statement. We also show that under special hypotheses we have inequalities in the opposite direction.
140 - Thomas Haettel 2021
In this article, we show that the Goldman-Iwahori metric on the space of all norms on a fixed vector space satisfies the Helly property for balls. On the non-Archimedean side, we deduce that most classical Bruhat-Tits buildings may be endowed with a natural piecewise $ell^infty$ metric which is injective. We also prove that most classical semisimple groups over non-Archimedean local fields act properly and cocompactly on Helly graphs. This gives another proof of biautomaticity for their uniform lattices. On the Archimedean side, we deduce that most classical symmetric spaces of non-compact type may be endowed with a natural piecewise $ell^infty$ metric which is coarsely Helly. We also prove that most classical semisimple groups over Archimedean local fields act properly and cocompactly on injective metric spaces. The only exception is the special linear group: if $n geq 3$ and $mathbb{K}$ is a local field, we show that $operatorname{SL}(n,mathbb{K})$ does not act properly and coboundedly on an injective metric space.
We show that every finite-dimensional Alexandrov space X with curvature bounded from below embeds canonically into a product of an Alexandrov space with the same curvature bound and a Euclidean space such that each affine function on X comes from an affine function on the Euclidean space.
136 - John Harvey 2015
The equivariant Gromov--Hausdorff convergence of metric spaces is studied. Where all isometry groups under consideration are compact Lie, it is shown that an upper bound on the dimension of the group guarantees that the convergence is by Lie homomorphisms. Additional lower bounds on curvature and volume strengthen this result to convergence by monomorphisms, so that symmetries can only increase on passing to the limit.
We prove the differentiability of Lipschitz maps X-->V, where X is a complete metric measure space satisfying a doubling condition and a Poincare inequality, and V is a Banach space with the Radon Nikodym Property (RNP). The proof depends on a new characterization of the differentiable structure on such metric measure spaces, in terms of directional derivatives in the direction of tangent vectors to suitable rectifiable curves.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا