Do you want to publish a course? Click here

Subdomain geometry of hyperbolic type metrics

125   0   0.0 ( 0 )
 Added by Matti Vuorinen
 Publication date 2012
  fields
and research's language is English




Ask ChatGPT about the research

Given a domain $G subsetneq Rn$ we study the quasihyperbolic and the distance ratio metrics of $G$ and their connection to the corresponding metrics of a subdomain $D subset G$. In each case, distances in the subdomain are always larger than in the original domain. Our goal is to show that, in several cases, one can prove a stronger domain monotonicity statement. We also show that under special hypotheses we have inequalities in the opposite direction.



rate research

Read More

147 - Gabriel Pallier 2018
Large-scale sublinearly Lipschitz maps have been introduced by Yves Cornulier in order to precisely state his theorems about asymptotic cones of Lie groups. In particular, Sublinearly biLipschitz Equivalences (SBE) are a weak variant of quasiisometries, with the only requirement of still inducing biLipschitz maps at the level of asymptotic cones. We focus here on hyperbolic metric spaces and study properties of their boundary extensions, reminiscent of quasiM{o}bius mappings. We give a dimensional invariant on the boundary that allows to distinguish hyperbolic symmetric spaces up to SBE, answering a question of Druc{t}u.
296 - Neil N. Katz 2020
It is shown that a construction of Z. Zhang and Y. Xiao on open subsets of Ptolemaic spaces yields, when the subset has boundary containing at least two points, metrics that are Gromov hyperbolic with parameter $log 2$ and strongly hyperbolic with parameter $1$ with no further conditions on the open set. A class of examples is constructed on Hadamard manifolds showing these estimates of the parameters are sharp.
Diversities are a generalization of metric spaces in which a non-negative value is assigned to all finite subsets of a set, rather than just to pairs of points. Here we provide an analogue of the theory of negative type metrics for diversities. We introduce negative type diversities, and show that, as in the metric space case, they are a generalization of $L_1$-embeddable diversities. We provide a number of characterizations of negative type diversities, including a geometric characterisation. Much of the recent interest in negative type metrics stems from the connections between metric embeddings and approximation algorithms. We extend some of this work into the diversity setting, showing that lower bounds for embeddings of negative type metrics into $L_1$ can be extended to diversities by using recently established extremal results on hypergraphs.
140 - Thomas Haettel 2019
We describe a simple locally CAT(0) classifying space for extra extra large type Artin groups (with all labels at least 5). Furthermore, when the Artin group is not dihedral, we describe a rank 1 periodic geodesic, thus proving that extra large type Artin groups are acylindrically hyperbolic. Together with Property RD proved by Ciabonu, Holt and Rees, the CAT(0) property implies the Baum-Connes conjecture for all XXL type Artin groups.
We observe that embeddings into random metrics can be fruitfully used to study the $L_1$-embeddability of lamplighter graphs or groups, and more generally lamplighter metric spaces. Once this connection has been established, several new upper bound estimates on the $L_1$-distortion of lamplighter metrics follow from known related estimates about stochastic embeddings into dominating tree-metrics. For instance, every lamplighter metric on a $n$-point metric space embeds bi-Lipschitzly into $L_1$ with distortion $O(log n)$. In particular, for every finite group $G$ the lamplighter group $H = mathbb{Z}_2wr G$ bi-Lipschitzly embeds into $L_1$ with distortion $O(loglog|H|)$. In the case where the ground space in the lamplighter construction is a graph with some topological restrictions, better distortion estimates can be achieved. Finally, we discuss how a coarse embedding into $L_1$ of the lamplighter group over the $d$-dimensional infinite lattice $mathbb{Z}^d$ can be constructed from bi-Lipschitz embeddings of the lamplighter graphs over finite $d$-dimensional grids, and we include a remark on Lipschitz free spaces over finite metric spaces.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا