Do you want to publish a course? Click here

Essential numerical ranges for linear operator pencils

78   0   0.0 ( 0 )
 Added by Sabine B\\\"ogli
 Publication date 2019
  fields
and research's language is English




Ask ChatGPT about the research

We introduce concepts of essential numerical range for the linear operator pencil $lambdamapsto A-lambda B$. In contrast to the operator essential numerical range, the pencil essential numerical ranges are, in general, neither convex nor even connected. The new concepts allow us to describe the set of spectral pollution when approximating the operator pencil by projection and truncation methods. Moreover, by transforming the operator eigenvalue problem $Tx=lambda x$ into the pencil problem $BTx=lambda Bx$ for suitable choices of $B$, we can obtain non-convex spectral enclosures for $T$ and, in the study of truncation and projection methods, confine spectral pollution to smaller sets than with hitherto known concepts. We apply the results to various block operator matrices. In particular, Theorem 4.12 presents substantial improvements over previously known results for Dirac operators while Theorem 4.5 excludes spectral pollution for a class of non-selfadjoint Schr{o}dinger operators which it has not been possible to treat with existing methods.



rate research

Read More

We introduce the concept of essential numerical range $W_{!e}(T)$ for unbounded Hilbert space operators $T$ and study its fundamental properties including possible equivalent characterizations and perturbation results. Many of the properties known for the bounded case do emph{not} carry over to the unbounded case, and new interesting phenomena arise which we illustrate by some striking examples. A key feature of the essential numerical range $W_{!e}(T)$ is that it captures spectral pollution in a unified and minimal way when approximating $T$ by projection methods or domain truncation methods for PDEs.
Smoothing (and decay) spacetime estimates are discussed for evolution groups of self-adjoint operators in an abstract setting. The basic assumption is the existence (and weak continuity) of the spectral density in a functional setting. Spectral identities for the time evolution of such operators are derived, enabling results concerning best constants for smoothing estimates. When combined with suitable comparison principles (analogous to those established in our previous work), they yield smoothing estimates for classes of functions of the operators . A important particular case is the derivation of global spacetime estimates for a perturbed operator $H+V$ on the basis of its comparison with the unperturbed operator $H.$ A number of applications are given, including smoothing estimates for fractional Laplacians, Stark Hamiltonians and Schrodinger operators with potentials.
In the setting of adjoint pairs of operators we consider the question: to what extent does the Weyl M-function see the same singularities as the resolvent of a certain restriction $A_B$ of the maximal operator? We obtain results showing that it is possible to describe explicitly certain spaces $Sc$ and $tilde{Sc}$ such that the resolvent bordered by projections onto these subspaces is analytic everywhere that the M-function is analytic. We present three examples -- one involving a Hain-L{u}st type operator, one involving a perturbed Friedrichs operator and one involving a simple ordinary differential operators on a half line -- which together indicate that the abstract results are probably best possible.
144 - Nurulla Azamov 2021
Given a self-adjoint operator $H_0$ and a relatively $H_0$-compact self-adjoint operator $V,$ the functions $r_j(z) = - sigma_j^{-1}(z),$ where $sigma_j(z)$ are eigenvalues of the compact operator $(H_0-z)^{-1}V,$ bear a lot of important information about the pair $H_0$ and $V.$ We call them coupling resonances. In case of rank one (and positive) perturbation $V,$ there is only one coupling resonance function, which is a Herglotz function. This case has been studied in depth in the literature, and appears in different situations, such as Sturm-Liouville theory, random Schrodinger operators, harnomic and spectral analyses, etc. The general case is complicated by the fact that the resonance functions are no longer single valued holomorphic functions, and potentially can have quite an erratic behaviour, typical for infinitely-valued holomorphic functions. Of special interest are those coupling resonance functions $r_z$ which approach a real number $r_{lambda+i0}$ from the interval $[0,1]$ as the spectral parameter $z=lambda+iy$ approaches a point $lambda$ of the essential spectrum, since they are responsible for spectral flow through $lambda$ inside essential spectrum when $H_0$ gets deformed to $H_1 = H_0+V$ via the path $H_0 + rV, r in [0,1].$ In this paper it is shown that if the pair $H_0,$ $V$ satisfies the limiting absorption principle, then the coupling resonance functions are well-behaved near the essential spectrum in the following sense. Let $I$ be an open interval inside the essential spectrum of $H_0$ and $epsilon>0.$ Then there exists a compact subset~$K$ of~$I$ such that $| I setminus K | < epsilon,$ and $K$ has a non-tangential neighbourhood in the upper complex half-plane, such that any coupling resonance function is either single-valued in the neighbourhood, or does not take a real value in the interval $[0,1].$
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا