Do you want to publish a course? Click here

The abstract Titchmarsh-Weyl M-function for adjoint operator pairs and its relation to the spectrum

165   0   0.0 ( 0 )
 Added by Ian Wood
 Publication date 2009
  fields
and research's language is English




Ask ChatGPT about the research

In the setting of adjoint pairs of operators we consider the question: to what extent does the Weyl M-function see the same singularities as the resolvent of a certain restriction $A_B$ of the maximal operator? We obtain results showing that it is possible to describe explicitly certain spaces $Sc$ and $tilde{Sc}$ such that the resolvent bordered by projections onto these subspaces is analytic everywhere that the M-function is analytic. We present three examples -- one involving a Hain-L{u}st type operator, one involving a perturbed Friedrichs operator and one involving a simple ordinary differential operators on a half line -- which together indicate that the abstract results are probably best possible.



rate research

Read More

We prove the unitary equivalence of the inverse of the Krein--von Neumann extension (on the orthogonal complement of its kernel) of a densely defined, closed, strictly positive operator, $Sgeq epsilon I_{mathcal{H}}$ for some $epsilon >0$ in a Hilbert space $mathcal{H}$ to an abstract buckling problem operator. In the concrete case where $S=bar{-Delta|_{C_0^infty(Omega)}}$ in $L^2(Omega; d^n x)$ for $Omegasubsetmathbb{R}^n$ an open, bounded (and sufficiently regular) domain, this recovers, as a particular case of a general result due to G. Grubb, that the eigenvalue problem for the Krein Laplacian $S_K$ (i.e., the Krein--von Neumann extension of $S$), [ S_K v = lambda v, quad lambda eq 0, ] is in one-to-one correspondence with the problem of {em the buckling of a clamped plate}, [ (-Delta)^2u=lambda (-Delta) u text{in} Omega, quad lambda eq 0, quad uin H_0^2(Omega), ] where $u$ and $v$ are related via the pair of formulas [ u = S_F^{-1} (-Delta) v, quad v = lambda^{-1}(-Delta) u, ] with $S_F$ the Friedrichs extension of $S$. This establishes the Krein extension as a natural object in elasticity theory (in analogy to the Friedrichs extension, which found natural applications in quantum mechanics, elasticity, etc.).
269 - John Weir 2008
We prove that the eigenvalues of a certain highly non-self-adjoint operator that arises in fluid mechanics correspond, up to scaling by a positive constant, to those of a self-adjoint operator with compact resolvent; hence there are infinitely many real eigenvalues which accumulate only at $pm infty$. We use this result to determine the asymptotic distribution of the eigenvalues and to compute some of the eigenvalues numerically. We compare these to earlier calculations by other authors.
We produce a new proof and extend results by Harrell and Stubbe for the discrete spectrum of a self-adjoint operator. An abstract approach--based on commutator algebra, the Rayleigh-Ritz principle, and an ``optimal usage of the Cauchy-Schwarz inequality--is used to produce ``parameter-free, ``projection-free
We consider a class of Jacobi matrices with unbounded entries in the so called critical (double root, Jordan box) case. We prove a formula for the spectral density of the matrix which relates its spectral density to the asymptotics of orthogonal polynomials associated with the matrix.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا