Do you want to publish a course? Click here

The essential numerical range for unbounded linear operators

205   0   0.0 ( 0 )
 Added by Marco Marletta
 Publication date 2019
  fields
and research's language is English




Ask ChatGPT about the research

We introduce the concept of essential numerical range $W_{!e}(T)$ for unbounded Hilbert space operators $T$ and study its fundamental properties including possible equivalent characterizations and perturbation results. Many of the properties known for the bounded case do emph{not} carry over to the unbounded case, and new interesting phenomena arise which we illustrate by some striking examples. A key feature of the essential numerical range $W_{!e}(T)$ is that it captures spectral pollution in a unified and minimal way when approximating $T$ by projection methods or domain truncation methods for PDEs.



rate research

Read More

We introduce concepts of essential numerical range for the linear operator pencil $lambdamapsto A-lambda B$. In contrast to the operator essential numerical range, the pencil essential numerical ranges are, in general, neither convex nor even connected. The new concepts allow us to describe the set of spectral pollution when approximating the operator pencil by projection and truncation methods. Moreover, by transforming the operator eigenvalue problem $Tx=lambda x$ into the pencil problem $BTx=lambda Bx$ for suitable choices of $B$, we can obtain non-convex spectral enclosures for $T$ and, in the study of truncation and projection methods, confine spectral pollution to smaller sets than with hitherto known concepts. We apply the results to various block operator matrices. In particular, Theorem 4.12 presents substantial improvements over previously known results for Dirac operators while Theorem 4.5 excludes spectral pollution for a class of non-selfadjoint Schr{o}dinger operators which it has not been possible to treat with existing methods.
Smoothing (and decay) spacetime estimates are discussed for evolution groups of self-adjoint operators in an abstract setting. The basic assumption is the existence (and weak continuity) of the spectral density in a functional setting. Spectral identities for the time evolution of such operators are derived, enabling results concerning best constants for smoothing estimates. When combined with suitable comparison principles (analogous to those established in our previous work), they yield smoothing estimates for classes of functions of the operators . A important particular case is the derivation of global spacetime estimates for a perturbed operator $H+V$ on the basis of its comparison with the unperturbed operator $H.$ A number of applications are given, including smoothing estimates for fractional Laplacians, Stark Hamiltonians and Schrodinger operators with potentials.
Consider a regular $d$-dimensional metric tree $Gamma$ with root $o$. Define the Schroedinger operator $-Delta - V$, where $V$ is a non-negative, symmetric potential, on $Gamma$, with Neumann boundary conditions at $o$. Provided that $V$ decays like $x^{-gamma}$ at infinity, where $1 < gamma leq d leq 2, gamma eq 2$, we will determine the weak coupling behavior of the bottom of the spectrum of $-Delta - V$. In other words, we will describe the asymptotical behavior of $inf sigma(-Delta - alpha V)$ as $alpha to 0+$
We describe a new form of diagonalization for linear two point constant coefficient differential operators with arbitrary linear boundary conditions. Although the diagonalization is in a weaker sense than that usually employed to solve initial boundary value problems (IBVP), we show that it is sufficient to solve IBVP whose spatial parts are described by such operators. We argue that the method described may be viewed as a reimplementation of the Fokas transform method for linear evolution equations on the finite interval. The results are extended to multipoint and interface operators, including operators defined on networks of finite intervals, in which the coefficients of the differential operator may vary between subintervals, and arbitrary interface and boundary conditions may be imposed; differential operators with piecewise constant coefficient are thus included. Both homogeneous and inhomogeneous problems are solved.
We propose a new approach to the spectral theory of perturbed linear operators , in the case of a simple isolated eigenvalue. We obtain two kind of results: radius bounds which ensure perturbation theory applies for perturbations up to an explicit size, and regularity bounds which control the variations of eigendata to any order. Our method is based on the Implicit Function Theorem and proceeds by establishing differential inequalities on two natural quantities: the norm of the projection to the eigendirection, and the norm of the reduced resolvent. We obtain completely explicit results without any assumption on the underlying Banach space. In companion articles, on the one hand we apply the regularity bounds to Markov chains, obtaining non-asymptotic concentration and Berry-Ess{e}en inequalities with explicit constants, and on the other hand we apply the radius bounds to transfer operator of intermittent maps, obtaining explicit high-temperature regimes where a spectral gap occurs.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا