Do you want to publish a course? Click here

Analysing Dense Passage Retrieval for Multi-hop Question Answering

104   0   0.0 ( 0 )
 Publication date 2021
and research's language is English




Ask ChatGPT about the research

We analyse the performance of passage retrieval models in the presence of complex (multi-hop) questions to provide a better understanding of how retrieval systems behave when multiple hops of reasoning are needed. In simple open-domain question answering (QA), dense passage retrieval has become one of the standard approaches for retrieving the relevant passages to infer an answer. Recently, dense passage retrieval also achieved state-of-the-art results in multi-hop QA, where aggregating information from multiple documents and reasoning over them is required. However, so far, the dense retrieval models are not evaluated properly concerning the multi-hop nature of the problem: models are typically evaluated by the end result of the retrieval pipeline, which leaves unclear where their success lies. In this work, we provide an in-depth evaluation of such models not only unveiling the reasons behind their success but also their limitations. Moreover, we introduce a hybrid (lexical and dense) retrieval approach that is highly competitive with the state-of-the-art dense retrieval model, while requiring substantially less computational resources. Furthermore, we also perform qualitative analysis to better understand the challenges behind passage retrieval for multi-hop QA.



rate research

Read More

90 - Chen Qu , Hamed Zamani , Liu Yang 2021
In this work, we address multi-modal information needs that contain text questions and images by focusing on passage retrieval for outside-knowledge visual question answering. This task requires access to outside knowledge, which in our case we define to be a large unstructured passage collection. We first conduct sparse retrieval with BM25 and study expanding the question with object names and image captions. We verify that visual clues play an important role and captions tend to be more informative than object names in sparse retrieval. We then construct a dual-encoder dense retriever, with the query encoder being LXMERT, a multi-modal pre-trained transformer. We further show that dense retrieval significantly outperforms sparse retrieval that uses object expansion. Moreover, dense retrieval matches the performance of sparse retrieval that leverages human-generated captions.
Open-domain question answering relies on efficient passage retrieval to select candidate contexts, where traditional sparse vector space models, such as TF-IDF or BM25, are the de facto method. In this work, we show that retrieval can be practically implemented using dense representations alone, where embeddings are learned from a small number of questions and passages by a simple dual-encoder framework. When evaluated on a wide range of open-domain QA datasets, our dense retriever outperforms a strong Lucene-BM25 system largely by 9%-19% absolute in terms of top-20 passage retrieval accuracy, and helps our end-to-end QA system establish new state-of-the-art on multiple open-domain QA benchmarks.
We present CORA, a Cross-lingual Open-Retrieval Answer Generation model that can answer questions across many languages even when language-specific annotated data or knowledge sources are unavailable. We introduce a new dense passage retrieval algorithm that is trained to retrieve documents across languages for a question. Combined with a multilingual autoregressive generation model, CORA answers directly in the target language without any translation or in-language retrieval modules as used in prior work. We propose an iterative training method that automatically extends annotated data available only in high-resource languages to low-resource ones. Our results show that CORA substantially outperforms the previous state of the art on multilingual open question answering benchmarks across 26 languages, 9 of which are unseen during training. Our analyses show the significance of cross-lingual retrieval and generation in many languages, particularly under low-resource settings.
194 - Yingqi Qu , Yuchen Ding , Jing Liu 2020
In open-domain question answering, dense passage retrieval has become a new paradigm to retrieve relevant passages for finding answers. Typically, the dual-encoder architecture is adopted to learn dense representations of questions and passages for semantic matching. However, it is difficult to effectively train a dual-encoder due to the challenges including the discrepancy between training and inference, the existence of unlabeled positives and limited training data. To address these challenges, we propose an optimized training approach, called RocketQA, to improving dense passage retrieval. We make three major technical contributions in RocketQA, namely cross-batch negatives, denoised hard negatives and data augmentation. The experiment results show that RocketQA significantly outperforms previous state-of-the-art models on both MSMARCO and Natural Questions. We also conduct extensive experiments to examine the effectiveness of the three strategies in RocketQA. Besides, we demonstrate that the performance of end-to-end QA can be improved based on our RocketQA retriever.
105 - Yuwei Fang , Siqi Sun , Zhe Gan 2019
In this paper, we present Hierarchical Graph Network (HGN) for multi-hop question answering. To aggregate clues from scattered texts across multiple paragraphs, a hierarchical graph is created by constructing nodes on different levels of granularity (questions, paragraphs, sentences, entities), the representations of which are initialized with pre-trained contextual encoders. Given this hierarchical graph, the initial node representations are updated through graph propagation, and multi-hop reasoning is performed via traversing through the graph edges for each subsequent sub-task (e.g., paragraph selection, supporting facts extraction, answer prediction). By weaving heterogeneous nodes into an integral unified graph, this hierarchical differentiation of node granularity enables HGN to support different question answering sub-tasks simultaneously. Experiments on the HotpotQA benchmark demonstrate that the proposed model achieves new state of the art, outperforming existing multi-hop QA approaches.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا