Do you want to publish a course? Click here

A new model of dark matter distribution in galaxies

197   0   0.0 ( 0 )
 Added by Dragan Hajdukovic
 Publication date 2013
  fields Physics
and research's language is English




Ask ChatGPT about the research

In the absence of the physical understanding of the phenomenon, different empirical laws have been used as approximation for distribution of dark matter in galaxies and clusters of galaxies. We suggest a new profile which is not empirical in nature, but motivated with the physical idea that what we call dark matter is essentially the gravitational polarization of the quantum vacuum (containing virtual gravitational dipoles) by the immersed baryonic matter. It is very important to include this new profile in forthcoming studies of dark matter halos and to reveal how well it performs in comparison with empirical profiles. A good agreement of the profile with observational findings would be the first sign of unexpected gravitational properties of the quantum vacuum.



rate research

Read More

We use observations of gas-rich dwarf galaxies to derive constraints on dark matter scattering with ordinary matter. We require that heating/cooling due to DM interacting with gas in the Leo T dwarf galaxy not exceed the ultra-low radiative cooling rate of the gas. This enables us to set $(i)$ stronger bounds than all the previous literature on ultra-light hidden photon DM for nearly all of the mass range $10^{-23}lesssim m_mathrm{DM} lesssim 10^{-10}$ eV, $(ii)$ limits on sub-GeV millicharged DM which add to the constraints on the recent EDGES 21cm absorption anomaly, and $(iii)$ constraints on DM-baryon interactions directly at low relative velocities $v_mathrm{rel}sim 17$ km/s. Our study opens a new direction at using observations of gas-rich dwarf galaxies from previous, current and upcoming optical and 21cm surveys to probe physics beyond the standard model.
We study the probability distribution function (PDF) of relative velocity between two different dark matter halos (i.e. pairwise velocity) with a set of high-resolution cosmological $N$-body simulations. We investigate the pairwise velocity PDFs over a wide range of halo masses of $10^{12.5-15}, h^{-1}M_{odot}$ and redshifts of $0<z<1$. At a given set of masses, redshift and the separation length between two halos, our model requires three parameters to set the pairwise velocity PDF, whereas previous non-Gaussian models in the literature assume four or more free parameters. At the length scales of $r=5-40, [h^{-1}, mathrm{Mpc}]$, our model predicts the mean and dispersion of the pairwise velocity for dark matter halos with their masses of $10^{12.5-13.5} , [h^{-1}M_{odot}]$ at $0.3 < z < 1$ with a 5%-level precision, while the model precision reaches a 20% level (mostly a 10% level) for other masses and redshifts explored in the simulations. We demonstrate that our model of the pairwise velocity PDF provides an accurate mapping of the two-point clustering of massive-galaxy-sized halos at the scales of $O(10), h^{-1}mathrm{Mpc}$ between redshift and real space for a given real-space correlation function. For a mass-limited halo sample with their masses greater than $10^{13.5}, h^{-1}M_{odot}$ at $z=0.55$, our model can explain the monopole and quadropole moments of the redshift-space two-point correlations with a precision better than 5% at the scales of $5-40$ and $10-30, h^{-1}mathrm{Mpc}$, respectively. Our model of the pairwise velocity PDF will give a detailed explanation of statistics of massive galaxies at the intermediate scales in redshift surveys, including the non-linear redshift-space distortion effect in two-point correlation functions and the measurements of the kinematic Sunyaev-Zeldovich effect.
We study the projected radial distribution of satellite galaxies around more than 28,000 Luminous Red Galaxies (LRGs) at 0.28<z<0.40 and trace the gravitational potential of LRG groups in the range 15<r/kpc<700. We show that at large radii the satellite number density profile is well fitted by a projected NFW profile with r_s~270 kpc and that at small radii this model underestimates the number of satellite galaxies. Utilizing the previously measured stellar light distribution of LRGs from deep imaging stacks we demonstrate that this small scale excess is consistent with a non-negligible baryonic mass contribution to the gravitational potential of massive groups and clusters. The combined NFW+scaled stellar profile provides an excellent fit to the satellite number density profile all the way from 15 kpc to 700 kpc. Dark matter dominates the total mass profile of LRG halos at r>25 kpc whereas baryons account for more than 50% of the mass at smaller radii. We calculate the total dark-to-baryonic mass ratio and show that it is consistent with measurements from weak lensing for environments dominated by massive early type galaxies. Finally, we divide the satellite galaxies in our sample into three luminosity bins and show that the satellite light profiles of all brightness levels are consistent with each other outside of roughly 25 kpc. At smaller radii we find evidence for a mild mass segregation with an increasing fraction of bright satellites close to the central LRG.
218 - E. Athanassoula 2013
`Conspiracy between the dark and the baryonic mater prohibits an unambiguous decomposition of disc galaxy rotation curves into the corresponding components. Several methods have been proposed to counter this difficulty, but their results are widely discrepant. In this paper, I revisit one of these methods, which relies on the relation between the halo density and the decrease of the bar pattern speed. The latter is routinely characterised by the ratio ${cal R}$ of the corotation radius $R_{CR}$ to the bar length $L_b$, ${cal R}=R_{CR}/L_b$. I use a set of $N$-body+SPH simulations, including sub-grid physics, whose initial conditions cover a range of gas fractions and halo shapes. The models, by construction, have roughly the same azimuthally averaged circular velocity curve and halo density and they are all submaximal, i.e. according to previous works they are expected to have all roughly the same ${cal R}$ value, well outside the fast bar range (1.2 $pm$ 0.2). Contrary to these expectations, however, these simulations end up having widely different ${cal R}$ values, either within the fast bar range, or well outside it. This shows that the ${cal R}$ value can not constrain the halo density, nor determine whether galactic discs are maximal or submaximal. I argue that this is true even for early type discs (S0s and Sas).
Analytic arguments and numerical simulations show that bosonic ultra-light dark matter (ULDM) would form cored density distributions (`solitons) at the center of galaxies. ULDM solitons offer a promising way to exclude or detect ULDM by looking for a distinctive feature in the central region of galactic rotation curves. Baryonic contributions to the gravitational potential pose an obstacle to such analyses, being (i) dynamically important in the inner galaxy and (ii) highly non-spherical in rotation-supported galaxies, resulting in non-spherical solitons. We present an algorithm for finding the ground state soliton solution in the presence of stationary non-spherical background baryonic mass distribution. We quantify the impact of baryons on the predicted ULDM soliton in the Milky Way and in low surface-brightness galaxies from the SPARC database.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا