Do you want to publish a course? Click here

Observations of dark and luminous matter: the radial distribution of satellite galaxies around massive red galaxies

231   0   0.0 ( 0 )
 Added by Tomer Tal
 Publication date 2012
  fields Physics
and research's language is English




Ask ChatGPT about the research

We study the projected radial distribution of satellite galaxies around more than 28,000 Luminous Red Galaxies (LRGs) at 0.28<z<0.40 and trace the gravitational potential of LRG groups in the range 15<r/kpc<700. We show that at large radii the satellite number density profile is well fitted by a projected NFW profile with r_s~270 kpc and that at small radii this model underestimates the number of satellite galaxies. Utilizing the previously measured stellar light distribution of LRGs from deep imaging stacks we demonstrate that this small scale excess is consistent with a non-negligible baryonic mass contribution to the gravitational potential of massive groups and clusters. The combined NFW+scaled stellar profile provides an excellent fit to the satellite number density profile all the way from 15 kpc to 700 kpc. Dark matter dominates the total mass profile of LRG halos at r>25 kpc whereas baryons account for more than 50% of the mass at smaller radii. We calculate the total dark-to-baryonic mass ratio and show that it is consistent with measurements from weak lensing for environments dominated by massive early type galaxies. Finally, we divide the satellite galaxies in our sample into three luminosity bins and show that the satellite light profiles of all brightness levels are consistent with each other outside of roughly 25 kpc. At smaller radii we find evidence for a mild mass segregation with an increasing fraction of bright satellites close to the central LRG.



rate research

Read More

We present a measurement of the correlation function between luminous red galaxies and cool gas traced by Mg II lambda lambda 2796, 2803 absorption, on scales ranging from about 30 kpc to 20 Mpc. The measurement is based on cross-correlating the positions of about one million red galaxies at z~0.5 and the flux decrements induced in the spectra of about 10^5 background quasars from the Sloan Digital Sky Survey. We find that: (i) This galaxy-gas correlation reveals a change of slope on scales of about 1 Mpc, consistent with the expected transition from a dark matter halo dominated environment to a regime where clustering is dominated by halo-halo correlations. Assuming that, on average, the distribution of Mg II gas follows that of dark matter up to a gas-to-mass ratio, we find the standard halo model to provide an accurate description of the gas distribution over three orders of magnitude in scale. Within this framework we estimate the average host halo mass of luminous red galaxies to be about 10^{13.5} M_solar, in agreement with other methods. We also find the Mg II gas-to-mass ratio around LRGs to be consistent with the cosmic value estimated on Mpc scales. Combining our galaxy-gas correlation and the galaxy-mass correlation function from galaxy-galaxy lensing analyses we can directly measure the Mg II gas-to-mass ratio as a function of scale and reach the same conclusion. (ii) From line-width estimates, we show that the velocity dispersion of the gas clouds also shows the expected 1- and 2-halo behaviors. On large scales the gas distribution follows the Hubble flow, whereas on small scales we observe the velocity dispersion of the Mg II gas clouds to be lower than that of collisionless dark matter particles within their host halo. This is in line with the fact that cool clouds are subject to the pressure of the virialized hot gas.
We investigate the properties of satellite galaxies that surround isolated hosts within the redshift range 0.01 < z < 0.15, using data taken as part of the Galaxy And Mass Assembly survey. Making use of isolation and satellite criteria that take into account stellar mass estimates, we find 3514 isolated galaxies of which 1426 host a total of 2998 satellites. Separating the red and blue populations of satellites and hosts, using colour-mass diagrams, we investigate the radial distribution of satellite galaxies and determine how the red fraction of satellites varies as a function of satellite mass, host mass and the projected distance from their host. Comparing the red fraction of satellites to a control sample of small neighbours at greater projected radii, we show that the increase in red fraction is primarily a function of host mass. The satellite red fraction is about 0.2 higher than the control sample for hosts with 11.0 < log M_* < 11.5, while the red fractions show no difference for hosts with 10.0 < log M_* < 10.5. For the satellites of more massive hosts the red fraction also increases as a function of decreasing projected distance. Our results suggest that the likely main mechanism for the quenching of star formation in satellites hosted by isolated galaxies is strangulation.
We develop the framework for testing Lorentz invariance in the dark matter sector using galactic dynamics. We consider a Lorentz violating (LV) vector field acting on the dark matter component of a satellite galaxy orbiting in a host halo. We introduce a numerical model for the dynamics of satellites in a galactic halo and for a galaxy in a rich cluster to explore observational consequences of such an LV field. The orbital motion of a satellite excites a time dependent LV force which greatly affects its internal dynamics. Our analysis points out key observational signatures which serve as probes of LV forces. These include modifications to the line of sight velocity dispersion, mass profiles and shapes of satellites. With future data and a more detailed modeling these signatures can be exploited to constrain a new region of the parameter space describing the LV in the dark matter sector.
We perform a comprehensive study of Milky Way (MW) satellite galaxies to constrain the fundamental properties of dark matter (DM). This analysis fully incorporates inhomogeneities in the spatial distribution and detectability of MW satellites and marginalizes over uncertainties in the mapping between galaxies and DM halos, the properties of the MW system, and the disruption of subhalos by the MW disk. Our results are consistent with the cold, collisionless DM paradigm and yield the strongest cosmological constraints to date on particle models of warm, interacting, and fuzzy dark matter. At $95%$ confidence, we report limits on (i) the mass of thermal relic warm DM, $m_{rm WDM} > 6.5 mathrm{keV}$ (free-streaming length, $lambda_{rm{fs}} lesssim 10,h^{-1} mathrm{kpc}$), (ii) the velocity-independent DM-proton scattering cross section, $sigma_{0} < 8.8times 10^{-29} mathrm{cm}^{2}$ for a $100 mathrm{MeV}$ DM particle mass (DM-proton coupling, $c_p lesssim (0.3 mathrm{GeV})^{-2}$), and (iii) the mass of fuzzy DM, $m_{phi}> 2.9 times 10^{-21} mathrm{eV}$ (de Broglie wavelength, $lambda_{rm{dB}} lesssim 0.5 mathrm{kpc}$). These constraints are complementary to other observational and laboratory constraints on DM properties.
99 - Wenting Wang 2014
We use the SDSS/DR8 galaxy sample to study the radial distribution of satellite galaxies around isolated primaries, comparing to semi-analytic models of galaxy formation based on the Millennium and Millennium-II simulations. SDSS satellites behave differently around high- and low-mass primaries: those orbiting objects with $M_*>10^{11}M_odot$ are mostly red and are less concentrated towards their host than the inferred dark matter halo, an effect that is very pronounced for the few blue satellites. On the other hand, less massive primaries have steeper satellite profiles that agree quite well with the expected dark matter distribution and are dominated by blue satellites, even in the inner regions where strong environmental effects are expected. In fact, such effects appear to be strong only for primaries with $M_* > 10^{11}M_odot$. This behaviour is not reproduced by current semi-analytic simulations, where satellite profiles always parallel those of the dark matter and satellite populations are predominantly red for primaries of all masses. The disagreement with SDSS suggests that environmental effects are too efficient in the models. Modifying the treatment of environmental and star formation processes can substantially increase the fraction of blue satellites, but their radial distribution remains significantly shallower than observed. It seems that most satellites of low-mass primaries can continue to form stars even after orbiting within their joint halo for 5 Gyr or more.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا