Do you want to publish a course? Click here

Temperature Dependence of Thermopower in Strongly Correlated Multiorbital Systems

211   0   0.0 ( 0 )
 Added by Michiyasu Mori
 Publication date 2013
  fields Physics
and research's language is English




Ask ChatGPT about the research

Temperature dependence of thermopower in the multiorbital Hubbard model is studied by using the dynamical mean-field theory with the non-crossing approximation impurity solver. It is found that the Coulomb interaction, the Hund coupling, and the crystal filed splitting bring about non-monotonic temperature dependence of the thermopower, including its sign reversal. The implication of our theoretical results to some materials is discussed.



rate research

Read More

The search for semiconductors with high thermoelectric figure of merit has been greatly aided by theoretical modeling of electron and phonon transport, both in bulk materials and in nanocomposites. Recent experiments have studied thermoelectric transport in ``strongly correlated materials derived by doping Mott insulators, whose insulating behavior without doping results from electron-electron repulsion, rather than from band structure as in semiconductors. Here a unified theory of electrical and thermal transport in the atomic and ``Heikes limit is applied to understand recent transport experiments on sodium cobaltate and other doped Mott insulators at room temperature and above. For optimal electron filling, a broad class of narrow-bandwidth correlated materials are shown to have power factors (the electronic portion of the thermoelectric figure of merit) as high at and above room temperature as in the best semiconductors.
100 - V. Zlatic 2005
A number of recent experiments report the low-temperature thermopower $alpha$ and specific heat coefficients $gamma=C_V/T$ of strongly correlated electron systems. Describing the charge and heat transport in a thermoelectric by transport equations, and assuming that the charge current and the heat current densities are proportional to the number density of the charge carriers, we obtain a simple mean-field relationship between $alpha$ and the entropy density $cal S$ of the charge carriers. We discuss corrections to this mean-field formula and use results obtained for the periodic Anderson and the Falicov-Kimball models to explain the concentration (chemical pressure) and temperature dependence of $alpha/gamma T$ in EuCu$_2$(Ge$_{1-x}$Si$_x$)$_2$, CePt$_{1-x}$Ni$_x$, and YbIn$_{1-x}$Ag${_x}$Cu$_4$ intermetallic compounds. % We also show, using the poor mans mapping which approximates the periodic Anderson lattice by the single impurity Anderson model, that the seemingly complicated behavior of $alpha(T)$ can be explained in simple terms and that the temperature dependence of $alpha(T)$ at each doping level is consistent with the magnetic character of 4{it f} ions.
141 - N.M. Plakida 2021
A consistent microscopic theory of superconductivity for strongly correlated electronic systems is presented. The Dyson equation for the normal and anomalous Green functions for the projected (Hubbard) electronic operators is derived. To compare various mechanisms of pairing, the extended Hubbard model is considered where the intersite Coulomb repulsion and the electron-phonon interaction are taken into account. We obtain the $d$-wave pairing with high-$T_c$ induced by the strong kinematical interaction of electrons with spin fluctuations, while the Coulomb repulsion and the electron-phonon interaction are suppressed for the $d$-wave pairing. These results support the spin-fluctuation mechanism of high-temperature superconductivity in cuprates previously proposed in phenomenological models.
79 - T. A. Costi 2019
Recent experiments have measured the signatures of the Kondo effect in the zero-field thermopower of strongly correlated quantum dots [Svilans {em et al.,} Phys. Rev. Lett. {bf 121}, 206801 (2018); Dutta {em et al.,} Nano Lett. {bf 19}, 506 (2019)]. They confirm the predicted Kondo-induced sign change in the thermopower, upon increasing the temperature through a gate-voltage dependent value $T_{1}gtrsim T_{rm K}$, where $T_{rm K}$ is the Kondo temperature. Here, we use the numerical renormalization group (NRG) method to investigate the effect of a finite magnetic field $B$ on the thermopower of such quantum dots. We show that, for fields $B$ exceeding a gate-voltage dependent value $B_{0}$, an additional sign change takes place in the Kondo regime at a temperature $T_{0}(Bgeq B_{0})>0$ with $T_0<T_1$. The field $B_{0}$ is comparable to, but larger than, the field $B_{c}$ at which the zero-temperature spectral function splits in a magnetic field. The validity of the NRG results for $B_{0}$ are checked by comparison with asymptotically exact higher-order Fermi-liquid calculations [Oguri {em et al.,} Phys. Rev. B {bf 97}, 035435 (2018)]. Our calculations clarify the field-dependent signatures of the Kondo effect in the thermopower of Kondo-correlated quantum dots and explain the recently measured trends in the $B$-field dependence of the thermoelectric response of such systems [Svilans {em et al.,} Phys. Rev. Lett. {bf 121}, 206801 (2018)].
We report on susceptibility measurements in the strongly correlated layered cobalt oxide [BiBa0.66K0.36O2]CoO2, which demonstrate the existence of a magnetic quantum critical point (QCP) governing the electronic properties. The investigated low frequency susceptibility displays a scaling behavior with both the temperature T and the magnetic field B ranging from the high-T non-Fermi liquid down to the low-T Fermi liquid. Whereas the inferred scaling form can be discussed within the standard framework of the quantum critical phenomena, the determined critical exponents suggest an unconventional magnetic QCP of a potentially generic type. Accordingly, these quantum critical fluctuations account for the anomalous logarithmic temperature dependence of the thermopower. This result allows us to conjecture that quantum criticality can be an efficient source of enhanced thermopower.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا