تصف هذه الورقة النظام الذي طورته STATISTICK DES TESSSES (أخيرا) ل TETISTIVER DES TESSES (LAST) من أجل تعقيد التعقيد المعجمي المهمة المشتركة في Semeval-2021.يتكون النظام المقترح من نموذج LightgBM يتغذى مع ميزات تم الحصول عليها من العديد من قوائم تردد Word، والمعايير المعجمية المنشورة والبيانات السيكلية.لمعالجة خصوصية المهمة المتعددة الكلمة، فإنه يستخدم تدابير جمعية Bigram.على الرغم من أن الميزة السياقية الوحيدة المستخدمة كانت طول الجملة، حقق النظام أداء مشرف في المهمة المتعددة الكلمة، ولكن أكثر فقرا في مهمة كلمة واحدة.تم العثور على تدابير جمعية بيجرام مفيدة، ولكن إلى حد محدود.
This paper describes the system developed by the Laboratoire d'analyse statistique des textes (LAST) for the Lexical Complexity Prediction shared task at SemEval-2021. The proposed system is made up of a LightGBM model fed with features obtained from many word frequency lists, published lexical norms and psychometric data. For tackling the specificity of the multi-word task, it uses bigram association measures. Despite that the only contextual feature used was sentence length, the system achieved an honorable performance in the multi-word task, but poorer in the single word task. The bigram association measures were found useful, but to a limited extent.
References used
https://aclanthology.org/
This paper presents the results and main findings of SemEval-2021 Task 1 - Lexical Complexity Prediction. We provided participants with an augmented version of the CompLex Corpus (Shardlow et al. 2020). CompLex is an English multi-domain corpus in wh
In this contribution, we describe the system presented by the PolyU CBS-Comp Team at the Task 1 of SemEval 2021, where the goal was the estimation of the complexity of words in a given sentence context. Our top system, based on a combination of lexic
This paper describes a system submitted by team BigGreen to LCP 2021 for predicting the lexical complexity of English words in a given context. We assemble a feature engineering-based model with a deep neural network model founded on BERT. While BERT
This paper describes systems submitted to Se- mEval 2021 Task 1: Lexical Complexity Prediction (LCP). We compare a linear and a non-linear regression models trained to work for both tracks of the task. We show that both systems are able to generalize
Lexical complexity plays an important role in reading comprehension. lexical complexity prediction (LCP) can not only be used as a part of Lexical Simplification systems, but also as a stand-alone application to help people better reading. This paper