Do you want to publish a course? Click here

Electron correlation vs. stabilization: A two-electron model atom in an intense laser pulse

70   0   0.0 ( 0 )
 Added by Dieter Bauer
 Publication date 1999
  fields Physics
and research's language is English




Ask ChatGPT about the research

We study numerically stabilization against ionization of a fully correlated two-electron model atom in an intense laser pulse. We concentrate on two frequency regimes: very high frequency, where the photon energy exceeds both, the ionization potential of the outer {em and} the inner electron, and an intermediate frequency where, from a ``single active electron-point of view the outer electron is expected to stabilize but the inner one is not. Our results reveal that correlation reduces stabilization when compared to results from single active electron-calculations. However, despite this destabilizing effect of electron correlation we still observe a decreasing ionization probability within a certain intensity domain in the high-frequency case. We compare our results from the fully correlated simulations with those from simpler, approximate models. This is useful for future work on ``real more-than-one electron atoms, not yet accessible to numerical {em ab initio} methods.



rate research

Read More

We investigated the two-dimensional electron momentum distributions of atomic negative ions in an intense laser field by solving the time-dependent Schrodinger equation (TDSE) and using the first- and 2nd-order strong-field approximations (SFA). We showed that photoelectron energy distributions and low-energy photoelectron momentum spectra predicted from SFA are in reasonable agreement with the solutions from the TDSE. More importantly, we showed that accurate electron-atom elastic scattering cross sections can be retrieved directly from high-energy electron momentum spectra of atomic negative ions in the laser field. This opens up the possibility of measuring electron-atom and electron-molecule scattering cross sections from the photodetachment of atomic and molecular negative ions by intense short lasers, respectively, with temporal resolutions in the order of femtoseconds.
A relativistic version of the effective charge model for computation of observable characteristics of multi-electron atoms and ions is developed. A complete and orthogonal Dirac hydrogen basis set, depending on one parameter -- effective nuclear charge $Z^{*}$ -- identical for all single-electron wave functions of a given atom or ion, is employed for the construction of the secondary-quantized representation. The effective charge is uniquely determined by the charge of the nucleus and a set of electron occupation numbers for a given state. We thoroughly study the accuracy of the leading-order approximation for the total binding energy and demonstrate that it is independent of the number of electrons of a multi-electron atom. In addition, it is shown that the fully analytical leading-order approximation is especially suited for the description of highly charged ions since our wave functions are almost coincident with the Dirac-Hartree-Fock ones for the complete spectrum. Finally, we evaluate various atomic characteristics, such as scattering factors and photoionization cross-sections, and thus envisage that the effective charge model can replace other models of comparable complexity, such as the Thomas-Fermi-Dirac model for all applications where it is still utilized.
Here, we demonstrate the radiative polarization of high-energy electron beams in collisions with ultrashort pulsed bi-chromatic laser fields. Employing a Boltzmann kinetic approach for the electron distribution allows us to simulate the beam polarization over a wide range of parameters and determine the optimum conditions for maximum radiative polarization. Those results are contrasted with a Monte-Carlo algorithm where photon emission and associated spin effects are treated fully quantum mechanically using spin-dependent photon emission rates. The latter method includes realistic focusing laser fields, which allows us to simulate a near-term experimentally feasible scenario of a 8 GeV electron beam scattering from a 1 PW laser pulse and provide a measurement that would verify the ultrafast radiative polarization in high-intensity laser pulses that we predict. Aspects of spin dependent radiation reaction are also discussed, with spin polarization leading to a measurable (5%) splitting of the energies of spin-up and spin-down electrons.
We present the first demonstration of two-photon double ionization of neon using an intense extreme ultraviolet (XUV) attosecond pulse train (APT) in a photon energy regime where both direct and sequential mechanisms are allowed. For an APT generated through high-order harmonic generation (HHG) in argon we achieve a total pulse energy close to 1 $mu$J, a central energy of 35 eV and a total bandwidth of $sim30$ eV. The APT is focused by broadband optics in a neon gas target to an intensity of $3cdot10^{12} $W$cdot$cm$^{-2}$. By tuning the photon energy across the threshold for the sequential process the double ionization signal can be turned on and off, indicating that the two-photon double ionization predominantly occurs through a sequential process. The demonstrated performance opens up possibilities for future XUV-XUV pump-probe experiments with attosecond temporal resolution in a photon energy range where it is possible to unravel the dynamics behind direct vs. sequential double ionization and the associated electron correlation effects.
We study the behavior of reduced models for the propagation of intense laser pulses in atomic gases. The models we consider incorporate ionization, blueshifting, and other nonlinear propagation effects in an ab initio manner, by explicitly taking into account the microscopic electron dynamics. Numerical simulations of the propagation of ultrashort linearly-polarized and elliptically-polarized laser pulses over experimentally-relevant propagation distances are presented. We compare the behavior of models where the electrons are treated classically with those where they are treated quantum-mechanically. A classical equivalent to the ground state is found, which maximizes the agreement between the quantum and classical predictions of the single-atom ionization probability as a function of laser intensity. We show that this translates into quantitative agreement between the quantum and classical models for the laser field evolution during propagation through gases of ground-state atoms. This agreement is exploited to provide a classical perspective on low- and high-order harmonic generation in linearly-polarized fields. In addition, we demonstrate the stability of the polarization of a nearly-linearly-polarized pulse using a two-dimensional model.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا