Do you want to publish a course? Click here

Retrieval of electron-atom scattering cross sections from laser-induced electron rescattering of atomic negative ions in intense laser fields

220   0   0.0 ( 0 )
 Added by Zhangjin Chen
 Publication date 2007
  fields Physics
and research's language is English




Ask ChatGPT about the research

We investigated the two-dimensional electron momentum distributions of atomic negative ions in an intense laser field by solving the time-dependent Schrodinger equation (TDSE) and using the first- and 2nd-order strong-field approximations (SFA). We showed that photoelectron energy distributions and low-energy photoelectron momentum spectra predicted from SFA are in reasonable agreement with the solutions from the TDSE. More importantly, we showed that accurate electron-atom elastic scattering cross sections can be retrieved directly from high-energy electron momentum spectra of atomic negative ions in the laser field. This opens up the possibility of measuring electron-atom and electron-molecule scattering cross sections from the photodetachment of atomic and molecular negative ions by intense short lasers, respectively, with temporal resolutions in the order of femtoseconds.



rate research

Read More

We study numerically stabilization against ionization of a fully correlated two-electron model atom in an intense laser pulse. We concentrate on two frequency regimes: very high frequency, where the photon energy exceeds both, the ionization potential of the outer {em and} the inner electron, and an intermediate frequency where, from a ``single active electron-point of view the outer electron is expected to stabilize but the inner one is not. Our results reveal that correlation reduces stabilization when compared to results from single active electron-calculations. However, despite this destabilizing effect of electron correlation we still observe a decreasing ionization probability within a certain intensity domain in the high-frequency case. We compare our results from the fully correlated simulations with those from simpler, approximate models. This is useful for future work on ``real more-than-one electron atoms, not yet accessible to numerical {em ab initio} methods.
Application of a parallel-projection inversion technique to z-scan spectra of multiply charged xenon and krypton ions, obtained by non-resonant field ionization of neutral targets, has for the first time permitted the direct observation of intensity-dependent ionization probabilities. These ionization efficiency curves have highlighted the presence of structure in the tunnelling regime, previously unobserved under full-volume techniques.
We propose to use the near-threshold electron scattering data for atoms to guide the reliable experimental determination of their electron affinities (EAs), extracted using the Wigner Threshold Law, from laser photodetachment threshold spectroscopy measurements. Data from the near-threshold electron elastic scattering from W, Te, Rh, Sb and Sn atoms calculated using our complex angular momentum method, wherein is embedded the electron-electron correlations and core polarization interaction, are used as illustrations. We conclude with a remark on the relativistic effects on the EA calculation for the heavy At atom.
Ubiquitous to most molecular scattering methods is the challenge to retrieve bond distance and angle from the scattering signals since this requires convergence of pattern matching algorithms or fitting methods. This problem is typically exacerbated when imaging larger molecules or for dynamic systems with little a priori knowledge. Here, we employ laser-induced electron diffraction (LIED) which is a powerful means to determine the precise atomic configuration of an isolated gas-phase molecule with picometre spatial and attosecond temporal precision. We introduce a simple molecular retrieval method, which is based only on the identification of critical points in the oscillating molecular interference scattering signal that is extracted directly from the laboratory-frame photoelectron spectrum. The method is compared with a Fourier-based retrieval method, and we show that both methods correctly retrieve the asymmetrically stretched and bent field-dressed configuration of the asymmetric top molecule carbonyl sulfide (OCS), which is confirmed by our quantum-classical calculations.
78 - Jintao Qi , Libin Fu , 2020
Rapid-advancing intense laser technologies enable the possibility of a direct laser-nucleus coupling. In this paper the effect of intense laser fields on a series of nuclear fission processes, including proton decay, alpha decay, and cluster decay, is theoretically studied with the help of nuclear double folding potentials. The results show that the half-lives of these decay processes can be modified by non-negligible amounts, for example on the order of 0.01 or 0.1 percents in intense laser fields available in the forthcoming years. In addition to numerical results, an approximate analytical formula is derived to connect the laser-induced modification to the decay half-life and the decay energy.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا