Do you want to publish a course? Click here

Classical versus quantum views of intense laser pulse propagation in gases

393   0   0.0 ( 0 )
 Added by Simon Berman
 Publication date 2019
  fields Physics
and research's language is English




Ask ChatGPT about the research

We study the behavior of reduced models for the propagation of intense laser pulses in atomic gases. The models we consider incorporate ionization, blueshifting, and other nonlinear propagation effects in an ab initio manner, by explicitly taking into account the microscopic electron dynamics. Numerical simulations of the propagation of ultrashort linearly-polarized and elliptically-polarized laser pulses over experimentally-relevant propagation distances are presented. We compare the behavior of models where the electrons are treated classically with those where they are treated quantum-mechanically. A classical equivalent to the ground state is found, which maximizes the agreement between the quantum and classical predictions of the single-atom ionization probability as a function of laser intensity. We show that this translates into quantitative agreement between the quantum and classical models for the laser field evolution during propagation through gases of ground-state atoms. This agreement is exploited to provide a classical perspective on low- and high-order harmonic generation in linearly-polarized fields. In addition, we demonstrate the stability of the polarization of a nearly-linearly-polarized pulse using a two-dimensional model.



rate research

Read More

65 - Simon Berman 2018
We consider the theoretical description of intense laser pulses propagating through gases. Starting from a first-principles description of both the electromagnetic field and the electron motion within the gas atoms, we derive a hierarchy of reduced models. We obtain a parallel set of models, where the atomic electrons are treated classically on the one hand, and quantum-mechanically on the other. By working consistently in either a Lagrangian formulation or a Hamiltonian formulation, we ensure that our reduced models preserve the variational structure of the parent models. Taking advantage of the Hamiltonian formulation, we deduce a number of conserved quantities of the reduced models.
176 - J. Pablo Salas , J Salas 2018
We consider the formation of RbCs by an elliptically polarized laser pulse. By varying the ellipticity of the laser for sufficiently large laser intensity, we see that the formation probability presents a strong dependence, especially around ellipticity 1/ $sqrt$ 2. We show that the analysis can be reduced to the investigation of the long-range interaction between the two atoms. The formation is mainly due to a small momentum shifts induced by the laser pulse. We analyze these results using the Silbersteins expressions of the polarizabilities, and show that the ellipticity of the field acts as a control knob for the formation probability, allowing significant variations of the dimer formation probability at a fixed laser intensity, especially in the region around an ellipticity of 1/ $sqrt$ 2.
We investigate the evolution of extreme ultraviolet (XUV) spectral lineshapes in an optically-thick helium gas under near-infrared (IR) perturbation. In our experimental and theoretical work, we systematically vary the IR intensity, time-delay, gas density and IR polarization parameters to study lineshape modifications induced by collective interactions, in a regime beyond the single atom response of a thin, dilute gas. In both experiment and theory, we find that specific features in the frequency-domain absorption profile, and their evolution with propagation distance, can be attributed to the interplay between resonant attosecond pulse propagation and IR induced phase shifts. Our calculations show that this interplay also manifests itself in the time domain, with the IR pulse influencing the reshaping of the XUV pulse propagating in the resonant medium.
Increasing ellipticity usually suppresses the recollision probability drastically. In contrast, we report on a recollision channel with large return energy and a substantial probability, regardless of the ellipticity. The laser envelope plays a dominant role in the energy gained by the electron, and in the conditions under which the electron comes back to the core. We show that this recollision channel eciently triggers multiple ionization with an elliptically polarized pulse.
367 - J. Dubois , C. Chandre , T. Uzer 2020
We study the double ionization of atoms subjected to circularly polarized (CP) laser pulses. We analyze two fundamental ionization processes: the sequential (SDI) and non-sequential (NSDI) double ionization in the light of the rotating frame (RF) which naturally embeds nonadiabatic effects in CP pulses. We use and compare two adiabatic approximations: The adiabatic approximation in the laboratory frame (LF) and the adiabatic approximation in the RF. The adiabatic approximation in the RF encapsulates the energy variations of the electrons on subcycle timescales happening in the LF and this, by fully taking into account the ion-electron interaction. This allows us to identify two nonadiabatic effects including the lowering of the threshold intensity at which over-the-barrier ionization happens and the lowering of the ionization time of the electrons. As a consequence, these nonadiabatic effects facilitate over-the-barrier ionization and recollision-induced ionizations. We analyze the outcomes of these nonadiabatic effects on the recollision mechanism. We show that the laser envelope plays an instrumental role in a recollision channel in CP pulses at the heart of NSDI.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا