No Arabic abstract
We define a BV-structure on the Hochschild-cohomology of a unital, associative algebra A with a symmetric, invariant and non-degenerate inner product. The induced Gerstenhaber algebra is the one described in Gerstenhabers original paper on Hochschild-cohomology. We also prove the corresponding theorem in the homotopy case, namely we define the BV-structure on the Hochschild-cohomology of a unital A-infinity-algebra with a symmetric and non-degenerate infinity-inner product.
Consider a smooth affine algebraic variety $X$ over an algebraically closed field, and let a finite group $G$ act on it. We assume that the characteristic of the field is greater than the dimension of $X$ and the order of $G$. An explicit formula for multiplication on the Hochschild cohomology of a crossed product of $k[G]$ and $k[X]$ is given in terms of multivector fields on $X$ and $g$-invariant subvarieties of $X$ for $gin G$.
We summarize some recent results obtained in collaboration with J. McCarthy on the spectrum of physical states in $W_3$ gravity coupled to $c=2$ matter. We show that the space of physical states, defined as a semi-infinite (or BRST) cohomology of the $W_3$ algebra, carries the structure of a BV-algebra. This BV-algebra has a quotient which is isomorphic to the BV-algebra of polyvector fields on the base affine space of $SL(3,C)$. Details have appeared elsewhere. [Published in the proceedings of Gursey Memorial Conference I: Strings and Symmetries, Istanbul, June 1994, eds. G. Aktas et al., Lect. Notes in Phys. 447, (Springer Verlag, Berlin, 1995)]
Coisotropic algebras consist of triples of algebras for which a reduction can be defined and unify in a very algebraic fashion coisotropic reduction in several settings. In this paper we study the theory of (formal) deformation of coisotropic algebras showing that deformations are governed by suitable coisotropic DGLAs. We define a deformation functor and prove that it commutes with reduction. Finally, we study the obstructions to existence and uniqueness of coisotropic algebras and present some geometric examples.
In this paper we study sufficient conditions for the solvability of the first Hochschild cohomology of a finite dimensional algebra as a Lie algebra in terms of its Ext-quiver in arbitrary characteristic. In particular, we show that if the quiver has no parallel arrows and no loops then the first Hochschild cohomology is solvable. For quivers containing loops, we determine easily verifiable sufficient conditions for the solvability of the first Hochschild cohomology. We apply these criteria to show the solvability of the first Hochschild cohomology space for large families of algebras, namely, several families of self-injective tame algebras including all tame blocks of finite groups and some wild algebras including most quantum complete intersections.
We describe the Gerstenhaber algebra structure on the Hochschild cohomology HH*$(A)$ when $A$ is a quadratic string algebra. First we compute the Hochschild cohomology groups using Barzdells resolution and we describe generators of these groups. Then we construct comparison morphisms between the bar resolution and Bardzells resolution in order to get formulae for the cup product and the Lie bracket. We find conditions on the bound quiver associated to string algebras in order to get non-trivial structures.