Do you want to publish a course? Click here

Deformation and Hochschild Cohomology of Coisotropic Algebras

194   0   0.0 ( 0 )
 Added by Chiara Esposito
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

Coisotropic algebras consist of triples of algebras for which a reduction can be defined and unify in a very algebraic fashion coisotropic reduction in several settings. In this paper we study the theory of (formal) deformation of coisotropic algebras showing that deformations are governed by suitable coisotropic DGLAs. We define a deformation functor and prove that it commutes with reduction. Finally, we study the obstructions to existence and uniqueness of coisotropic algebras and present some geometric examples.



rate research

Read More

We give a complete study of the Clifford-Weyl algebra ${mathcal C}(n,2k)$ from Bose-Fermi statistics, including Hochschild cohomology (with coefficients in itself). We show that ${mathcal C}(n,2k)$ is rigid when $n$ is even or when $k eq 1$. We find all non-trivial deformations of ${mathcal C}(2n+1,2)$ and study their representations.
165 - Rina Anno 2005
Consider a smooth affine algebraic variety $X$ over an algebraically closed field, and let a finite group $G$ act on it. We assume that the characteristic of the field is greater than the dimension of $X$ and the order of $G$. An explicit formula for multiplication on the Hochschild cohomology of a crossed product of $k[G]$ and $k[X]$ is given in terms of multivector fields on $X$ and $g$-invariant subvarieties of $X$ for $gin G$.
We prove $L_{infty}$-formality for the higher cyclic Hochschild complex $chH$ over free associative algebra or path algebra of a quiver. The $chH$ complex is introduced as an appropriate tool for the definition of pre-Calabi-Yau structure. We show that cohomologies of this complex are pure in case of free algebras (path algebras), concentrated in degree zero. It serves as a main ingredient for the formality proof. For any smooth algebra we choose a small qiso subcomplex in the higher cyclic Hochschild complex, which gives rise to a calculus of highly noncommutative monomials, we call them $xidelta$-monomials. The Lie structure on this subcomplex is combinatorially described in terms of $xidelta$-monomials. This subcomplex and a basis of $xidelta$-monomials in combination with arguments from Groebner bases theory serves for the cohomology calculations of the higher cyclic Hochschild complex. The language of $xidelta$-monomials in particular allows an interpretation of pre-Calabi-Yau structure as a noncommutative Poisson structure.
Quantum Drinfeld Hecke algebras are generalizations of Drinfeld Hecke algebras in which polynomial rings are replaced by quantum polynomial rings. We identify these algebras as deformations of skew group algebras, giving an explicit connection to Hochschild cohomology. We compute the relevant part of Hochschild cohomology for actions of many reflection groups and we exploit computations from our paper with Shroff for diagonal actions. By combining our work with recent results of Levandovskyy and Shepler, we produce examples of quantum Drinfeld Hecke algebras. These algebras generalize the braided Cherednik algebras of Bazlov and Berenstein.
285 - Gregory Ginot , Sinan Yalin 2016
A first goal of this paper is to precisely relate the homotopy theories of bialgebras and $E_2$-algebras. For this, we construct a conservative and fully faithful $infty$-functor from pointed conilpotent homotopy bialgebras to augmented $E_2$-algebras which consists in an appropriate cobar construction. Then we prove that the (derived) formal moduli problem of homotopy bialgebras structures on a bialgebra is equivalent to the (derived) formal moduli problem of $E_2$-algebra structures on this cobar construction. We show consequently that the $E_3$-algebra structure on the higher Hochschild complex of this cobar construction, given by the solution to the higher Deligne conjecture, controls the deformation theory of this bialgebra. This implies the existence of an $E_3$-structure on the deformation complex of a dg bialgebra, solving a long-standing conjecture of Gerstenhaber-Schack. On this basis we solve a long-standing conjecture of Kontsevich, by proving the $E_3$-formality of the deformation complex of the symmetric bialgebra. This provides as a corollary a new proof of Etingof-Kazdhan deformation quantization of Lie bialgebras which extends to homotopy dg Lie bialgebras and is independent from the choice of an associator. Along the way, we establish new general results of independent interest about the deformation theory of algebraic structures, which shed a new light on various deformation complexes and cohomology theories studied in the literature.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا