Do you want to publish a course? Click here

A note on monopole moduli spaces

90   0   0.0 ( 0 )
 Publication date 2003
  fields Physics
and research's language is English




Ask ChatGPT about the research

We discuss the structure of the framed moduli space of Bogomolny monopoles for arbitrary symmetry breaking and extend the definition of its stratification to the case of arbitrary compact Lie groups. We show that each stratum is a union of submanifolds for which we conjecture that the natural $L^2$ metric is hyperKahler. The dimensions of the strata and of these submanifolds are calculated, and it is found that for the latter, the dimension is always a multiple of four.



rate research

Read More

110 - Zhiyu Liu , Shizhuo Zhang 2021
We study Bridgeland moduli spaces of semistable objects of $(-1)$-classes and $(-4)$-classes in the Kuznetsov components on index one prime Fano threefold $X_{4d+2}$ of degree $4d+2$ and index two prime Fano threefold $Y_d$ of degree $d$ for $d=3,4,5$. For every Serre-invariant stability condition on the Kuznetsov components, we show that the moduli spaces of stable objects of $(-1)$-classes on $X_{4d+2}$ and $Y_d$ are isomorphic. We show that moduli spaces of stable objects of $(-1)$-classes on $X_{14}$ are realized by Fano surface $mathcal{C}(X)$ of conics, moduli spaces of semistable sheaves $M_X(2,1,6)$ and $M_X(2,-1,6)$ and the correspondent moduli spaces on cubic threefold $Y_3$ are realized by moduli spaces of stable vector bundles $M^b_Y(2,1,2)$ and $M^b_Y(2,-1,2)$. We show that moduli spaces of semistable objects of $(-4)$-classes on $Y_{d}$ are isomorphic to the moduli spaces of instanton sheaves $M^{inst}_Y$ when $d eq 1,2$, and show that therere open immersions of $M^{inst}_Y$ into moduli spaces of semistable objects of $(-4)$-classes when $d=1,2$. Finally, when $d=3,4,5$ we show that these moduli spaces are all isomorphic to $M^{ss}_X(2,0,4)$.
224 - G. Pagnini , R.K. Saxena 2008
A Voigt profile function emerges in several physical investigations (e.g. atmospheric radiative transfer, astrophysical spectroscopy, plasma waves and acoustics) and it turns out to be the convolution of the Gaussian and the Lorentzian densities. Its relation with a number of special functions has been widely derived in literature starting from its Fourier type integral representation. The main aim of the present paper is to introduce the Mellin-Barnes integral representation as a useful tool to obtain new analytical results. Here, starting from the Mellin-Barnes integral representation, the Voigt function is expressed in terms of the Fox H-function which includes representations in terms of the Meijer G-function and previously well-known representations with other special functions.
503 - Milan Batista 2018
The article presents a generalization of Sherman-Morrison-Woodbury (SMW) formula for the inversion of a matrix of the form A+sum(U)k)*V(k),k=1..N).
We calculate the homomorphism of the cohomology induced by the Krichever map of moduli spaces of curves into infinite-dimensional Grassmannian. This calculation can be used to compute the homology classes of cycles on moduli spaces of curves that are defined in terms of Weierstrass points.
168 - W. De Roeck , C. Maes , K. Netocny 2009
We continue the study of the free energy of quantum lattice spin systems where to the local Hamiltonian $H$ an arbitrary mean field term is added, a polynomial function of the arithmetic mean of some local observables $X$ and $Y$ that do not necessarily commute. By slightly extending a recent paper by Hiai, Mosonyi, Ohno and Petz [9], we prove in general that the free energy is given by a variational principle over the range of the operators $X$ and $Y$. As in [9], the result is a noncommutative extension of the Laplace-Varadhan asymptotic formula.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا