Do you want to publish a course? Click here

A Note on a Generalization of Sherman-Morrison-Woodbury formula

419   0   0.0 ( 0 )
 Added by Milan Batista
 Publication date 2018
  fields Physics
and research's language is English
 Authors Milan Batista




Ask ChatGPT about the research

The article presents a generalization of Sherman-Morrison-Woodbury (SMW) formula for the inversion of a matrix of the form A+sum(U)k)*V(k),k=1..N).

rate research

Read More

We provide a simple extension of Bolthausens Morita type proof cite{Bolt2} of the replica symmetric formula for the Sherrington-Kirkpatrick (SK) model and prove the replica symmetry for all $(beta,h)$ that satisfy $beta^2 E, text{sech}^2(betasqrt{q}Z+h) leq 1$, where $q = Etanh^2(betasqrt{q}Z+h)$. Compared to cite{Bolt2}, the key of the argument is to apply the conditional second moment method to a suitably reduced partition function.
We discuss the structure of the framed moduli space of Bogomolny monopoles for arbitrary symmetry breaking and extend the definition of its stratification to the case of arbitrary compact Lie groups. We show that each stratum is a union of submanifolds for which we conjecture that the natural $L^2$ metric is hyperKahler. The dimensions of the strata and of these submanifolds are calculated, and it is found that for the latter, the dimension is always a multiple of four.
196 - G. Pagnini , R.K. Saxena 2008
A Voigt profile function emerges in several physical investigations (e.g. atmospheric radiative transfer, astrophysical spectroscopy, plasma waves and acoustics) and it turns out to be the convolution of the Gaussian and the Lorentzian densities. Its relation with a number of special functions has been widely derived in literature starting from its Fourier type integral representation. The main aim of the present paper is to introduce the Mellin-Barnes integral representation as a useful tool to obtain new analytical results. Here, starting from the Mellin-Barnes integral representation, the Voigt function is expressed in terms of the Fox H-function which includes representations in terms of the Meijer G-function and previously well-known representations with other special functions.
Caratheodory showed that $n$ complex numbers $c_1,...,c_n$ can uniquely be written in the form $c_p=sum_{j=1}^m rho_j {epsilon_j}^p$ with $p=1,...,n$, where the $epsilon_j$s are different unimodular complex numbers, the $rho_j$s are strictly positive numbers and integer $m$ never exceeds $n$. We give the conditions to be obeyed for the former property to hold true if the $rho_j$s are simply required to be real and different from zero. It turns out that the number of the possible choices of the signs of the $rho_j$s are {at most} equal to the number of the different eigenvalues of the Hermitian Toeplitz matrix whose $i,j$-th entry is $c_{j-i}$, where $c_{-p}$ is equal to the complex conjugate of $c_{p}$ and $c_{0}=0$. This generalization is relevant for neutron scattering. Its proof is made possible by a lemma - which is an interesting side result - that establishes a necessary and sufficient condition for the unimodularity of the roots of a polynomial based only on the polynomial coefficients. Keywords: Toeplitz matrix factorization, unimodular roots, neutron scattering, signal theory, inverse problems. PACS: 61.12.Bt, 02.30.Zz, 89.70.+c, 02.10.Yn, 02.50.Ga
In this paper, we correct an inaccurate result of previous works on the Feynman propagator in position space of a free Dirac field in (3+1)-dimensional spacetime, and we derive the generalized analytic formulas of both the scalar Feynman propagator and the spinor Feynman propagator in position space in arbitrary (D+1)-dimensional spacetime, and we further find a recurrence relation among the spinor Feynman propagator in (D+1)-dimensional spacetime and the scalar Feynman propagators in (D+1)-, (D-1)- and (D+3)-dimensional spacetimes.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا