No Arabic abstract
We present a new analysis of the E772 and E866 experiments on the nuclear dependence of Drell-Yan (DY) lepton pair production resulting from the bombardment of $^2H$, Be, C, Ca, Fe, and W targets by 800 GeV/c protons at Fermilab. We employ a light-cone formulation of the DY reaction in the rest frame of the nucleus, where the dimuons detected at small values of Bjorken x_2 << 1 may be considered to originate from the decay of a heavy photon radiated from an incident quark in a bremsstrahlung process. We infer the energy loss of the quark by examining the suppression of the nuclear-dependent DY ratios seen as a function of projectile momentum fraction x_1 and dimuon mass M. Shadowing, which also leads to nuclear suppression of dimuons, is calculated within the same approach employing the results of phenomenological fits to deep inelastic scattering data from HERA. The analysis yields -dE/dz =2.73 +/- 0.37 +/- 0.5 GeV/fm for the rate of quark energy loss per unit path length, a value consistent with theoretical expectations including the effects of the inelastic interaction of the incident proton at the surface of the nucleus. This is the first observation of a nonzero energy loss effect in such experiments.
A precise measurement of the ratios of the Drell-Yan cross section per nucleon for an 800 GeV/c proton beam incident on Be, Fe and W targets is reported. The behavior of the Drell-Yan ratios at small target parton momentum fraction is well described by an existing fit to the shadowing observed in deep-inelastic scattering. The cross section ratios as a function of the incident parton momentum fraction set tight limits on the energy loss of quarks passing through a cold nucleus.
We explore the mechanism of transverse momentum broadening of fast quarks propagating in nuclei, using Drell-Yan (DY) transverse momentum distributions measured in the experiment E866 at FermiLab with beams of 800 GeV protons. Our theoretical analysis is based on the color dipole approach in the target rest frame, which has provided a successful phenomenological description of a variety of hadronic reactions. The present application is relevant to the regime of short coherence length (SCL), where the spatial extent of the fluctuations of the projectile responsible for the Drell-Yan reaction is short compared to the internucleon spacing. In this limit, momentum broadening comes from initial state interactions and is described as color filtering, i.e. absorption of large-size dipoles leading to diminished transverse separation and hence enhanced transverse momentum. The predictions we present are in good agreement with the E866 data. The interactions leading to the acquisition of transverse momentum arise from the color-dipole cross section determined previously from deep-inelastic scattering on proton targets. Aside from the determination of the color-dipole cross section, no other phenomenological input is needed to explain the experimental results. The mean-square momentum broadening of dileptons determined in a recent separate analysis of the data is likewise well described by our theory. These results confirm that the origin of momentum broadening in DY is the color dipole cross section mediating soft initial state interactions between the parton of the projectile that initiates the reaction and the nucleons of the nucleus, as provided by the color dipole description. Predictions for broadening observables at RHIC are presented.
We show that for Drell-Yan events by unpolarized hadronic projectiles and nuclear targets, azimuthal asymmetries can arise from the nuclear distortion of the hadronic projectile wave function, typically a spin-orbit effect occurring on the nuclear surface. The asymmetry depends on quantities that enter also the spin asymmetry in the corresponding Drell-Yan event on polarized free nucleonic targets. Hence, this study can be of help in exploring the spin structure of the nucleon, in particular the transverse spin distribution of partons inside the proton. All arguments can be extended also to antinucleon projectiles and, consequently, apply to possible future measurements involving nuclear targets at the foreseen HESR ring at GSI.
The distributions of outgoing protons and charged hadrons in high energy proton-nucleus collisions are described rather well by a linear extrapolation from proton-proton collisions. This linear extrapolation is applied to precisely measured Drell-Yan cross sections for 800 GeV protons incident on a variety of nuclear targets. The deviation from linear scaling in the atomic number A can be accounted for by energy degradation of the proton as it passes through the nucleus if account is taken of the time delay of particle production due to quantum coherence. We infer an average proper coherence time of 0.4 +/- 0.1 fm/c. Then we apply the linear extrapolation to measured J/psi production cross sections for 200 and 450 GeV/c protons incident on a variety of nuclear targets. Our analysis takes into account energy loss of the beam proton, the time delay of particle production due to quantum coherence, and absorption of the J/psi on nucleons. The best representation is obtained for a coherence time of 0.5 fm/c, which is consistent with Drell-Yan production, and an absorption cross section of 3.6 mb, which is consistent with the value deduced from photoproduction of the J/psi on nuclear targets. Finally, we compare to recent J/psi data from S+U and Pb+Pb collisions at the SPS. The former are reproduced reasonably well with no new parameters, but not the latter.
Several rotational invariant quantities for the lepton angular distributions in Drell-Yan and quarkonium production were derived several years ago, allowing the comparison between different experiments adopting different reference frames. Using an intuitive picture for describing the lepton angular distribution in these processes, we show how the rotational invariance of these quantities can be readily obtained. This approach can also be used to determine the rotational invariance or non-invariance of various quantities specifying the amount of violation for the Lam-Tung relation. While the violation of the Lam-Tung relation is often expressed by frame-dependent quantities, we note that alternative frame-independent quantities are preferred.