Do you want to publish a course? Click here

Cronin effect in the Drell-Yan reaction

88   0   0.0 ( 0 )
 Added by Mikkel Johnson
 Publication date 2007
  fields
and research's language is English




Ask ChatGPT about the research

We explore the mechanism of transverse momentum broadening of fast quarks propagating in nuclei, using Drell-Yan (DY) transverse momentum distributions measured in the experiment E866 at FermiLab with beams of 800 GeV protons. Our theoretical analysis is based on the color dipole approach in the target rest frame, which has provided a successful phenomenological description of a variety of hadronic reactions. The present application is relevant to the regime of short coherence length (SCL), where the spatial extent of the fluctuations of the projectile responsible for the Drell-Yan reaction is short compared to the internucleon spacing. In this limit, momentum broadening comes from initial state interactions and is described as color filtering, i.e. absorption of large-size dipoles leading to diminished transverse separation and hence enhanced transverse momentum. The predictions we present are in good agreement with the E866 data. The interactions leading to the acquisition of transverse momentum arise from the color-dipole cross section determined previously from deep-inelastic scattering on proton targets. Aside from the determination of the color-dipole cross section, no other phenomenological input is needed to explain the experimental results. The mean-square momentum broadening of dileptons determined in a recent separate analysis of the data is likewise well described by our theory. These results confirm that the origin of momentum broadening in DY is the color dipole cross section mediating soft initial state interactions between the parton of the projectile that initiates the reaction and the nucleons of the nucleus, as provided by the color dipole description. Predictions for broadening observables at RHIC are presented.



rate research

Read More

The Sivers distributions recently extracted from semi-inclusive deep inelastic scattering data [1] are used to compute estimates for Sivers asymmetries in Drell-Yan processes which are being planned at several facilities (RHIC, COMPASS, J-PARC, PAX, PANDA, NICA (JINR) and SPASCHARM (IHEP)). Most of these asymmetries turn out to be large and could allow a clear test of the predicted sign change of the Sivers distributions when active in SIDIS and Drell-Yan processes. This is regarded as a fundamental test of our understanding, within QCD and the factorization scheme, of single spin asymmetries.
We present a new analysis of the E772 and E866 experiments on the nuclear dependence of Drell-Yan (DY) lepton pair production resulting from the bombardment of $^2H$, Be, C, Ca, Fe, and W targets by 800 GeV/c protons at Fermilab. We employ a light-cone formulation of the DY reaction in the rest frame of the nucleus, where the dimuons detected at small values of Bjorken x_2 << 1 may be considered to originate from the decay of a heavy photon radiated from an incident quark in a bremsstrahlung process. We infer the energy loss of the quark by examining the suppression of the nuclear-dependent DY ratios seen as a function of projectile momentum fraction x_1 and dimuon mass M. Shadowing, which also leads to nuclear suppression of dimuons, is calculated within the same approach employing the results of phenomenological fits to deep inelastic scattering data from HERA. The analysis yields -dE/dz =2.73 +/- 0.37 +/- 0.5 GeV/fm for the rate of quark energy loss per unit path length, a value consistent with theoretical expectations including the effects of the inelastic interaction of the incident proton at the surface of the nucleus. This is the first observation of a nonzero energy loss effect in such experiments.
The Sivers function is extracted from HERMES data on single spin asymmetries in semi-inclusive deeply inelastic scattering. The result is used for making predictions for the Sivers effect in the Drell-Yan process.
We present the Monte Carlo event generator WINHAC for Drell-Yan processes in proton-proton, proton-antiproton, proton-ion and ion-ion collisions. It features multiphoton radiation within the Yennie-Frautschi-Suura exclusive exponentiation scheme with O(alpha) electroweak corrections for the charged-current (W+/W-) processes and multiphoton radiation generated by PHOTOS for neutral-current (Z+gamma) ones. For the initial-state QCD/QED parton shower and hadronisation it is interfaced with PYTHIA. It includes several options, e.g. for the polarized W-boson production, generation of weighted/unweighted events, etc. WINHAC was cross-checked numerically at the per-mille level with independent Monte Carlo programs, such as HORACE and SANC. It has been used as a basic tool for developing and testing some new methods of precise measurements of the Standard Model parameters at the LHC, in particular the W-boson mass. Recently, it has been applied to simulations of double Drell-Yan processes resulting from double-parton scattering, in order to assess their influence on the Higgs-boson detection at the LHC in its ZZ and W+W- decay channels.
We compute the nuclear corrections to the proton-deuteron Drell-Yan cross section for inclusive dilepton production, which, when combined with the proton-proton cross section, is used to determine the flavor asymmetry in the proton sea, dbar - ubar. In addition to nuclear smearing corrections that are known to be important at large values of the nucleons parton momentum fraction x_N, we also consider dynamical off-shell nucleon corrections associated with the modifications of the bound nucleon structure inside the deuteron, which we find to be significant at intermediate and large x_N values. We also provide estimates of the nuclear corrections at kinematics corresponding to existing and planned Drell-Yan experiments at Fermilab and J-PARC which aim to determine the dbar/ubar ratio for x < 0.6.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا