An updated and extended analysis of the quark mass dependence of the nucleons axial vector coupling constant g_A is presented in comparison with state-of-the-art lattice QCD results. Special emphasis is placed on the role of the Delta(1232) isobar. It is pointed out that standard chiral perturbation theory of the pion-nucleon system at order p^4 fails to provide an interpolation between the lattice data and the physical point. In constrast, a version of chiral effective field theory with explicit inclusion of the Delta(1232) proves to be successful. Detailed error analysis and convergence tests are performed. Integrating out the Delta(1232) as an explicit degree of freedom introduces uncontrolled errors for pion masses m_pi >~ 300 MeV.
We construct the Lorentz-invariant chiral Lagrangians up to the order $mathcal{O}(p^4)$ by including $Delta(1232)$ as an explicit degree of freedom. A full one-loop investigation on processes involving $Delta(1232)$ can be performed with them. For the $piDeltaDelta$ Lagrangian, one obtains 38 independent terms at the order $mathcal{O}(p^3)$ and 318 independent terms at the order $mathcal{O}(p^4)$. For the $pi NDelta$ Lagrangian, we get 33 independent terms at the order $mathcal{O}(p^3)$ and 218 independent terms at the order $mathcal{O}(p^4)$. The heavy baryon projection is also briefly discussed.
Lattice QCD studies on fluctuations and correlations of charm quantum number have established that deconfinement of charm degrees of freedom sets in around the chiral crossover temperature, $T_c$, i.e. charm degrees of freedom carrying fractional baryonic charge start to appear. By reexamining those same lattice QCD data we show that, in addition to the contributions from quark-like excitations, the partial pressure of charm degrees of freedom may still contain significant contributions from open-charm meson and baryon-like excitations associated with integral baryonic charges for temperatures up to $1.2~ T_c$. Charm quark-quasiparticles become the dominant degrees of freedom for temperatures $T>1.2~ T_c$.
We present first results on the axial and pseudoscalar $Delta$ form factors. The analysis is carried out in the quenched approximation where statistical errors are small and the lattice set-up can be investigated relatively quickly. We also present an analysis with a hybrid action using staggered sea quarks and domain-wall valence fermions.
We explore new representations for lattice gauge theories with fermions, where the space-time lattice is divided into dynamically fluctuating regions, inside which different types of degrees of freedom are used in the path integral. The first kind of regions is a union of so-called bags, in which the dynamics is described by the free propagation of composite degrees of freedom of the original fermions. In the second region, called complementary domain, configurations of the remaining interacting degrees of freedom are used to describe the dynamics. We work out the bag representation for the gauge groups SU(2) and SU(3) and address the nature of the strong coupling effective degrees of freedom, which are fermions for SU(3) and bosons for SU(2). We discuss first steps towards a numerical simulation of the bag representations.
Chiral effective field theory can provide valuable insight into the chiral physics of hadrons when used in conjunction with non-perturbative schemes such as lattice QCD. In this discourse, the attention is focused on extrapolating the mass of the rho meson to the physical pion mass in quenched QCD (QQCD). With the absence of a known experimental value, this serves to demonstrate the ability of the extrapolation scheme to make predictions without prior bias. By using extended effective field theory developed previously, an extrapolation is performed using quenched lattice QCD data that extends outside the chiral power-counting regime (PCR). The method involves an analysis of the renormalization flow curves of the low energy coefficients in a finite-range regularized effective field theory. The analysis identifies an optimal regulator, which is embedded in the lattice QCD data themselves. This optimal regulator is the regulator value at which the renormalization of the low energy coefficients is approximately independent of the range of quark masses considered. By using recent precision, quenched lattice results, the extrapolation is tested directly by truncating the analysis to a set of points above 380 MeV, while being blinded of the results probing deeply into the chiral regime. The result is a successful extrapolation to the chiral regime.