We construct the Lorentz-invariant chiral Lagrangians up to the order $mathcal{O}(p^4)$ by including $Delta(1232)$ as an explicit degree of freedom. A full one-loop investigation on processes involving $Delta(1232)$ can be performed with them. For the $piDeltaDelta$ Lagrangian, one obtains 38 independent terms at the order $mathcal{O}(p^3)$ and 318 independent terms at the order $mathcal{O}(p^4)$. For the $pi NDelta$ Lagrangian, we get 33 independent terms at the order $mathcal{O}(p^3)$ and 218 independent terms at the order $mathcal{O}(p^4)$. The heavy baryon projection is also briefly discussed.
There are indications that some theories with spontaneous symmetry breaking also feature a light scalar in their spectrum, with a mass comparable to the one of the Goldstone modes. In this paper, we perform the one-loop renormalization of a theory of Goldstone modes invariant under a chiral $SU(n)times SU(n)$ symmetry group coupled to a generic scalar singlet. We employ the background field method, together with the heat kernel expansion, to get an expression for the effective action at one loop and single out the anomalous dimensions, which can be read off from the second Seeley-DeWitt coefficient. As a relevant application, we use our master formula to renormalize chiral-scale perturbation theory, an alternative to $SU(3)$ chiral perturbation theory where the $f_0(500)$ meson is interpreted as a dilaton. Based on our results, we briefly discuss strategies to test and discern both effective field theories using lattice simulations.
Transverse momentum dependent parton distribution functions (TMDPDFs) provide a unique probe of the three-dimensional spin structure of hadrons. We construct spin-dependent quasi-TMDPDFs that are amenable to lattice QCD calculations and that can be used to determine spin-dependent TMDPDFs. We calculate the short-distance coefficients connecting spin-dependent TMDPDFs and quasi-TMDPDFs at one-loop order. We find that the helicity and transversity distributions have the same coefficient as the unpolarized TMDPDF. We also argue that the same is true for pretzelosity and that this spin universality of the matching will hold to all orders in $alpha_s$. Thus, it is possible to calculate ratios of these distributions as a function of longitudinal momentum and transverse position utilizing simpler Wilson line paths than have previously been considered.
We consider our recently obtained general structure of two point (self-energy and propagator) functions of quarks and gluons in a nontrivial background like a heat bath and an external magnetic field. Based on this, here we have computed free energy and pressure of quarks and gluons for a magnetized hot and dense deconfined QCD matter in weak field approximation. For heat bath we have used hard thermal loop perturbation theory (HTLpt) in presence of finite chemical potential. For weak field approximations we have obtained the pressure of QCD matter, both with and without the high temperature expansion. The results with high $T$ expansions are completely analytic and gauge independent but depends on the renormalization scale in addition to the temperature, chemical potential and the external magnetic field. We also discuss the modification of QCD Debye mass of such matter for an arbitrary magnetic field. Analytic expressions for Debye mass are also obtained for both strong and weak field approximation. It is found to exhibit some interesting features depending upon the three different scales, i.e, the quark mass, temperature and the strength of the magnetic field. The various divergences appearing in the quark and gluon free energies are regulated through appropriate counter terms. In weak field approximation, the low temperature behavior of the pressure is found to strongly depend on the magnetic field than that at high temperature. We also discuss the specific problem with one-loop HTLpt associated with the over-counting of certain orders in coupling.
Considering the general structure of the two point functions of quarks and gluons, we compute the free energy and pressure of a strongly magnetized hot and dense QCD matter created in heavy-ion collisions. In presence of strong magnetic field we found that the deconfined QCD matter exhibits a paramagnetic nature. One gets different pressure in a direction parallel and perpendicular to magnetic field due to the magnetization acquired by the system. We obtain both longitudinal and transverse pressure, and magnetization of a hot deconfined QCD matter in presence of magnetic field. We have used hard thermal loop approximation (HTL) for heat bath. We obtained completely analytic expression for pressure and magnetization under certain approximation. Various divergences appearing in free energy are regulated using appropriate counter terms. The obtained anisotropic pressure may be useful for magnetohydrodynamics description of a hot and dense deconfined QCD matter produced in heavy-ion collisions.
An updated and extended analysis of the quark mass dependence of the nucleons axial vector coupling constant g_A is presented in comparison with state-of-the-art lattice QCD results. Special emphasis is placed on the role of the Delta(1232) isobar. It is pointed out that standard chiral perturbation theory of the pion-nucleon system at order p^4 fails to provide an interpolation between the lattice data and the physical point. In constrast, a version of chiral effective field theory with explicit inclusion of the Delta(1232) proves to be successful. Detailed error analysis and convergence tests are performed. Integrating out the Delta(1232) as an explicit degree of freedom introduces uncontrolled errors for pion masses m_pi >~ 300 MeV.