Do you want to publish a course? Click here

Chiral extrapolation beyond the power-counting regime

121   0   0.0 ( 0 )
 Added by Jonathan Hall
 Publication date 2011
  fields
and research's language is English




Ask ChatGPT about the research

Chiral effective field theory can provide valuable insight into the chiral physics of hadrons when used in conjunction with non-perturbative schemes such as lattice QCD. In this discourse, the attention is focused on extrapolating the mass of the rho meson to the physical pion mass in quenched QCD (QQCD). With the absence of a known experimental value, this serves to demonstrate the ability of the extrapolation scheme to make predictions without prior bias. By using extended effective field theory developed previously, an extrapolation is performed using quenched lattice QCD data that extends outside the chiral power-counting regime (PCR). The method involves an analysis of the renormalization flow curves of the low energy coefficients in a finite-range regularized effective field theory. The analysis identifies an optimal regulator, which is embedded in the lattice QCD data themselves. This optimal regulator is the regulator value at which the renormalization of the low energy coefficients is approximately independent of the range of quark masses considered. By using recent precision, quenched lattice results, the extrapolation is tested directly by truncating the analysis to a set of points above 380 MeV, while being blinded of the results probing deeply into the chiral regime. The result is a successful extrapolation to the chiral regime.



rate research

Read More

We perform an analysis of the QCD lattice data on the baryon octet and decuplet masses based on the relativistic chiral Lagrangian. The baryon self energies are computed in a finite volume at next-to-next-to-next-to leading order (N$^3$LO), where the dependence on the physical meson and baryon masses is kept. The number of free parameters is reduced significantly down to 12 by relying on large-$N_c$ sum rules. Altogether we describe accurately more than 220 data points from six different lattice groups, BMW, PACS-CS, HSC, LHPC, QCDSF-UKQCD and NPLQCD. Values for all counter terms relevant at N$^3$LO are predicted. In particular we extract a pion-nucleon sigma term of 39$_{-1}^{+2}$ MeV and a strangeness sigma term of the nucleon of $sigma_{sN} = 84^{+ 28}_{-;4}$ MeV. The flavour SU(3) chiral limit of the baryon octet and decuplet masses is determined with $(802 pm 4)$ MeV and $(1103 pm 6)$ MeV. Detailed predictions for the baryon masses as currently evaluated by the ETM lattice QCD group are made.
We analyze the quark mass dependence of the Roper mass to one-loop order in relativistic baryon chiral perturbation theory. The loop integrals are evaluated using infrared regularization which preserves chiral symmetry and establishes a chiral counting scheme. The derived chiral expansion of the Roper mass may prove useful for chiral extrapolations of lattice data. For couplings of natural size the quark mass dependence of the Roper mass is similar to the one of the nucleon.
We study hadron correlators upon artificial restoration of the spontaneously broken chiral symmetry. In a dynamical lattice simulation we remove the lowest lying eigenmodes of the Dirac operator from the valence quark propagators and study evolution of the hadron masses obtained. All mesons and baryons in our study, except for a pion, survive unbreaking the chiral symmetry and their exponential decay signals become essentially better. From the analysis of the observed spectroscopic patterns we conclude that confinement still persists while the chiral symmetry is restored. All hadrons fall into different chiral multiplets. The broken U(1)_A symmetry does not get restored upon unbreaking the chiral symmetry. We also observe signals of some higher symmetry that includes chiral symmetry as a subgroup. Finally, from comparison of the Delta - N splitting before and after unbreaking of the chiral symmetry we conclude that both the color-magnetic and the flavor-spin quark-quark interactions are of equal importance.
After combined character and hopping expansions and integration over the spatial gauge links, lattice QCD reduces to a three-dimensional $SU(3)$ Polyakov loop model with complicated interactions. A simple truncation of the effective theory is valid for heavy quarks on reasonably fine lattices and can be solved by linked cluster expansion in its effective couplings. This was used ealier to demonstrate the onset transition to baryon matter in the cold and dense regime. Repeating these studies for general $N_c$, one finds that for large $N_c$ the onset transition becomes first-order, and the pressure scales as $psim N_c$ through three consecutive orders in the hoppoing expansion. These features are consistent with the formal definition of quarkyonic matter given in the literature. We discuss the implications for $N_c=3$ and physical QCD.
It is possible to define and calculate in a gauge-invariant manner the chiral as well as the partial wave content of the quark-antiquark Fock component of a meson in the infrared, where mass is generated. Using the variational method and a set of interpolators that span a complete chiral basis we extract in a lattice QCD Monte Carlo simulation with two dynamical light quarks the orbital angular momentum and spin content of the rho-meson. We obtain in the infrared a simple 3S1 component as a leading component of the rho-meson with a small admixture of the 3D1 partial wave, in agreement with the SU(6) flavor-spin symmetry.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا