Do you want to publish a course? Click here

Subtleties in Measuring Iron K Lines in AGN

58   0   0.0 ( 0 )
 Added by Tahir Yaqoob
 Publication date 2001
  fields Physics
and research's language is English
 Authors T. Yaqoob




Ask ChatGPT about the research

Chandra and XMM observations are showing that the Fe-K emission lines in type 1 AGN are composite, in general consisting of a narrow and a broad component. We review the latest Chandra HETG results and compare the line profiles with those measured by ASCA. The narrow Fe-K line components necessitate re-modeling of the line profiles measured previously and revision of the parameters of the relativistic broad components, as well re-interpretation of variability studies. We also explicitly demonstrate the effect of changes in the ASCA calibration on the measurements of the Fe-K lines in AGN. We find that the differences in measured parameters are insignificant. Both the intrinsic width and EW change by less than 8%. Fe-K line studies which claim much larger differences do not adequately model the line emission. We point out that it is incorrect to compare different calibrations, and indeed make astrophysical inferences, using models which do not describe the data. We then present some new results for the highest S/N broad Fe-K line profile in the entire ASCA archive, from NGC 4151.

rate research

Read More

145 - J.N. Reeves 2006
Initial results on the iron K-shell line and reflection component in several AGN observed as part of the Suzaku Guaranteed time program are reviewed. This paper discusses a small sample of Compton-thin Seyferts observed to date with Suzaku; namely MCG -5-23-16, MCG -6-30-15, NGC 4051, NGC 3516, NGC 2110, 3C 120 and NGC 2992. The broad iron K$alpha$ emission line appears to be present in all but one of these Seyfert galaxies, while the narrow core of the line from distant matter is ubiquitous in all the observations. The iron line in MCG -6-30-15 shows the most extreme relativistic blurring of all the objects, the red-wing of the line requires the inner accretion disk to extend inwards to within 2.2Rg of the black hole, in agreement with the XMM-Newton observations. Strong excess emission in the Hard X-ray Detector (HXD) above 10 keV is observed in many of these Seyfert galaxies, consistent with the presence of a reflection component from reprocessing in Compton-thick matter (e.g. the accretion disk). Only one Seyfert galaxy (NGC 2110) shows neither a broad iron line nor a reflection component. The spectral variability of MCG -6-30-15, MCG -5-23-16 and NGC 4051 is also discussed. In all 3 cases, the spectra appear harder when the source is fainter, while there is little variability of the iron line or reflection component with source flux. This agrees with a simple two component spectral model, whereby the variable emission is the primary power-law, while the iron line and reflection component remain relatively constant.
54 - T. Maiolino 2019
Broad, asymmetric, and red-skewed Fe Kalpha emission lines have been observed in the spectra of low-mass X-ray binaries hosting neutron stars (NSs) as a compact object. Because more than one model is able to describe these features, the explanation of where and how the red-skewed Fe lines are produced is still a matter of discussion. It is broadly accepted that the shape of the Fe Kalpha line is strongly determined by the special and general relativistic effects occurring in the innermost part of the accretion disk. In this relativistic framework, the Fe fluorescent lines are produced in the innermost part of the accretion disk by reflection of hard X-ray photons coming from the central source (corona and/or NS surface). We developed an alternative and nonrelativistic model, called the windline model, that is capable to describe the Fe line features. In this nonrelativistic framework, the line photons are produced at the bottom of a partly ionized outflow (wind) shell as a result of illumination by the continuum photons coming from the central source, and the red-skewness of the line profile is explained by repeated electron scattering of the photons in a diverging outflow. Because GX~13+1 is a well-known disk-wind source, it is a perfect target for testing the windline model and comparing it to the relativistic one. In order to access the goodness of the fit and distinguish between the two line models, we used the run-test statistical method in addition to the canonical $chi^2$ statistical method. The diskline and windline models both fit the asymmetric GX13+1 Fe line well. From a statistical point of view, for the two observations we analyzed, the run-test was not able to distinguish between the two Fe line models, at 5% significance level.
We present a uniform X-ray spectral analysis of eight type-1 active galactic nuclei (AGN) that have been previously observed with relativistically broadened iron emission lines. Utilizing data from the XMM-Newton European Photon Imaging Camera (EPIC-pn) we carefully model the spectral continuum, taking complex intrinsic absorption and emission into account. We then proceed to model the broad Fe K feature in each source with two different accretion disk emission line codes, as well as a self-consistent, ionized accretion disk spectrum convolved with relativistic smearing from the inner disk. Comparing the results, we show that relativistic blurring of the disk emission is required to explain the spectrum in most sources, even when one models the full reflection spectrum from the photoionized disk.
[abridged] We model the X-ray reprocessing from a strong co-rotating flare above an accretion disk in active galactic nuclei. We explore the horizontal structure and evolution of the underlying hot spot. To obtain the spectral evolution seen by a distant observer, we apply a general relativity ray-tracing technique. We concentrate on the energy band around the iron K-line, where the relativistic effects are most pronounced. Persistent flares lasting for a significant fraction of the orbital time scale and short, transient flares are considered. In our time-resolved analysis, the spectra recorded by a distant observer depend on the position of the flare/spot with respect to the central black hole. If the flare duration significantly exceeds the light travel time across the spot, then the spot horizontal stratification is unimportant. On the other hand, if the flare duration is comparable to the light travel time across the spot radius, the lightcurves exhibit a typical asymmetry in their time profiles. The sequence of dynamical spectra proceeds from more strongly to less strongly ionized re-emission. At all locations within the spot the spectral intensity increases towards edge-on emission angles, revealing the limb brightening effect. Future X-ray observatories with significantly larger effective collecting areas will enable to spectroscopically map out the azimuthal irradiation structure of the accretion disk and to localize persistent flares. If the hot spot is not located too close to the marginally stable orbit of the black hole, it will be possible to probe the reflecting medium via the sub-structure of the iron K-line. Indications for transient flares will only be obtained from analyzing the observed lightcurves on the gravitational time scale of the accreting supermassive black hole.
The properties of the relativistically broadened Fe K alpha line emitted in Active Galactic Nuclei (AGN) are still debated among the AGN community. Recent works seem to exclude that the broad Fe line is a common feature of AGN. The analysis of a large sample composed by 157 XMM-Newton archival observations of radio quiet AGN is presented here. This ongoing project is a development of the work reported in Guainazzi et al. 2006.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا