Do you want to publish a course? Click here

Iron lines from transient and persisting hot spots on AGN accretion disks

159   0   0.0 ( 0 )
 Added by Rene Goosmann
 Publication date 2007
  fields Physics
and research's language is English




Ask ChatGPT about the research

[abridged] We model the X-ray reprocessing from a strong co-rotating flare above an accretion disk in active galactic nuclei. We explore the horizontal structure and evolution of the underlying hot spot. To obtain the spectral evolution seen by a distant observer, we apply a general relativity ray-tracing technique. We concentrate on the energy band around the iron K-line, where the relativistic effects are most pronounced. Persistent flares lasting for a significant fraction of the orbital time scale and short, transient flares are considered. In our time-resolved analysis, the spectra recorded by a distant observer depend on the position of the flare/spot with respect to the central black hole. If the flare duration significantly exceeds the light travel time across the spot, then the spot horizontal stratification is unimportant. On the other hand, if the flare duration is comparable to the light travel time across the spot radius, the lightcurves exhibit a typical asymmetry in their time profiles. The sequence of dynamical spectra proceeds from more strongly to less strongly ionized re-emission. At all locations within the spot the spectral intensity increases towards edge-on emission angles, revealing the limb brightening effect. Future X-ray observatories with significantly larger effective collecting areas will enable to spectroscopically map out the azimuthal irradiation structure of the accretion disk and to localize persistent flares. If the hot spot is not located too close to the marginally stable orbit of the black hole, it will be possible to probe the reflecting medium via the sub-structure of the iron K-line. Indications for transient flares will only be obtained from analyzing the observed lightcurves on the gravitational time scale of the accreting supermassive black hole.



rate research

Read More

71 - Nevin Weinberg , 2000
The discovery of high-amplitude brightness oscillations during type I X-ray bursts from six low-mass X-ray binaries has provided a powerful new tool to study the properties of matter at supranuclear densities, the effects of strong gravity, and the propagation of thermonuclear burning. There is substantial evidence that these brightness oscillations are produced by spin modulation of one or two localized hot spots confined to the stellar surface. It is therefore important to calculate the expected light curves produced by such hot spots under various physical assumptions, so that comparison with the observed light curves may most sensitively yield information about the underlying physical quantities. In this paper we make general relativistic calculations of the light curves and oscillation amplitudes produced by a rotating neutron star with one or two hot spots as a function of spot size, stellar compactness, rotational velocity at the stellar surface, spot location, orientation of the line of sight of the observer, and the angular dependence of the surface specific intensity. We find that stellar rotation and beaming of the emission tend to increase the observed oscillation amplitudes whereas greater compactness and larger spot size tend to decrease them. By applying these results to 4U 1636--536, we show that this source must have two emitting spots and place strong constraints on the neutron stars magnetic field geometry. We also show that the data on the phase lags between photons of different energies in the persistent pulsations in SAX J1808--58 can be fit well with a model in which the observed hard leads are due to Doppler beaming.
71 - Federico Garcia 2015
Context. Quasi-periodic variability has been observed in a number of X-ray binaries harboring black hole candidates. In general relativity, black holes are uniquely described by the Kerr metric and, according to the cosmic censorship conjecture, curvature singularities always have to be clothed by an event horizon. Aims. In this paper, we study the effect of an external magnetic field on the observed light curves of orbiting hot spots in thin accretion discs around Kerr black holes and naked singularities. Methods. We employ a ray-tracing algorithm to calculate the light curves and power spectra of such hot spots as seen by a distant observer for uniform and dipolar magnetic field configurations assuming a weak coupling between the magnetic field and the disc matter. Results. We show that the presence of an external dipolar magnetic field leads to potentially observable modifications of these signals for both Kerr black holes and naked singularities, while an external uniform magnetic field has practically no effect. In particular, we demonstrate that the emission from a hot spot orbiting near the innermost stable circular orbit of a naked singularity in a dipolar magnetic field can be significantly harder than the emission of the same hot spot in the absence of such a magnetic field. Conclusions. The comparison of our model with observational data may allow us study the geometry of magnetic fields around compact objects and to test the cosmic censorship conjecture in conjunction with other observables such as thermal continuum spectra and iron line profiles.
The relativistically broad X-ray iron line seen in many AGN spectra is thought to originate from the central regions of the putative black hole accretion disk. Both the line profile and strength will vary in response to rapid variability of the primary X-ray continuum source. The temporal response of the line contains information on the accretion disk structure, the X-ray source geometry, and the spin of the black hole. Since the X-ray source will have a size comparable to the fluorescing region of the accretion disk, the general reverberation problem is not invertible. However, progress can be made since, empirically, AGN light curves are seen to undergo dramatic short timescale variability which presumably corresponds to the creation of a single new active region within the distributed X-ray source. The iron line response to these individual events can be described using linear transfer theory. We consider the line response to the activation/flaring of a new X-ray emitting region. Most of our detailed calculations are performed for the case of an X-ray source on the symmetry axis and at some height above the disk plane around a Kerr black hole. We also present preliminary calculations for off-axis flares. We suggest ways in which future, high-throughput X-ray observatories such as XMM and the Constellation X-ray Mission may use these reverberation signatures to probe both the mass and spin of AGN black holes, as well as the X-ray source geometry.
A number of neutron star low-mass X-ray binaries have recently been discovered to show broad, asymmetric Fe K emission lines in their X-ray spectra. These lines are generally thought to be the most prominent part of a reflection spectrum, originating in the inner part of the accretion disk where strong relativistic effects can broaden emission lines. We present a comprehensive, systematic analysis of Suzaku and XMM-Newton spectra of 10 neutron star low-mass X-ray binaries, all of which display broad Fe K emission lines. Of the 10 sources, 4 are Z sources, 4 are atolls and 2 are accreting millisecond X-ray pulsars (also atolls). The Fe K lines are well fit by a relativistic line model for a Schwarzschild metric, and imply a narrow range of inner disk radii (6 - 15 GM/c^2) in most cases. This implies that the accretion disk extends close to the neutron star surface over a range of luminosities. Continuum modeling shows that for the majority of observations, a blackbody component (plausibly associated with the boundary layer) dominates the X-ray emission from 8 - 20 keV. Thus it appears likely that this spectral component produces the majority of the ionizing flux that illuminates the accretion disk. Therefore, we also fit the spectra with a blurred reflection model, wherein a blackbody component illuminates the disk. This model fits well in most cases, supporting the idea that the boundary layer is illuminating a geometrically thin disk.
145 - J.N. Reeves 2006
Initial results on the iron K-shell line and reflection component in several AGN observed as part of the Suzaku Guaranteed time program are reviewed. This paper discusses a small sample of Compton-thin Seyferts observed to date with Suzaku; namely MCG -5-23-16, MCG -6-30-15, NGC 4051, NGC 3516, NGC 2110, 3C 120 and NGC 2992. The broad iron K$alpha$ emission line appears to be present in all but one of these Seyfert galaxies, while the narrow core of the line from distant matter is ubiquitous in all the observations. The iron line in MCG -6-30-15 shows the most extreme relativistic blurring of all the objects, the red-wing of the line requires the inner accretion disk to extend inwards to within 2.2Rg of the black hole, in agreement with the XMM-Newton observations. Strong excess emission in the Hard X-ray Detector (HXD) above 10 keV is observed in many of these Seyfert galaxies, consistent with the presence of a reflection component from reprocessing in Compton-thick matter (e.g. the accretion disk). Only one Seyfert galaxy (NGC 2110) shows neither a broad iron line nor a reflection component. The spectral variability of MCG -6-30-15, MCG -5-23-16 and NGC 4051 is also discussed. In all 3 cases, the spectra appear harder when the source is fainter, while there is little variability of the iron line or reflection component with source flux. This agrees with a simple two component spectral model, whereby the variable emission is the primary power-law, while the iron line and reflection component remain relatively constant.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا