Do you want to publish a course? Click here

Identifying super-spreaders in information-epidemic coevolving dynamics on multiplex networks

97   0   0.0 ( 0 )
 Added by Ying Liu
 Publication date 2021
  fields Physics
and research's language is English




Ask ChatGPT about the research

Identifying super-spreaders in epidemics is important to suppress the spreading of disease especially when the medical resource is limited.In the modern society, the information on epidemics transmits swiftly through various communication channels which contributes much to the suppression of epidemics. Here we study on the identification of super-spreaders in the information-disease coupled spreading dynamics. Firstly, we find that the centralities in physical contact layer are no longer effective to identify super-spreaders in epidemics, which is due to the suppression effects from the information spreading. Then by considering the structural and dynamical couplings between the communication layer and physical contact layer, we propose a centrality measure called coupling-sensitive centrality to identify super-spreaders in disease spreading. Simulation results on synthesized and real-world multiplex networks show that the proposed measure is not only much more accurate than centralities on the single network, but also outperforms two typical multilayer centralities in identifying super-spreaders. These findings imply that considering the structural and dynamical couplings between layers is very necessary in identifying the key roles in the coupled multilayer systems.



rate research

Read More

214 - Qi Zeng , Ying Liu , Liming Pan 2021
Identifying the most influential spreaders is important to understand and control the spreading process in a network. As many real-world complex systems can be modeled as multilayer networks, the question of identifying important nodes in multilayer network has attracted much attention. Existing studies focus on the multilayer network structure, while neglecting how the structural and dynamical coupling of multiple layers influence the dynamical importance of nodes in the network. Here we investigate on this question in an information-disease coupled spreading dynamics on multiplex networks. Firstly, we explicitly reveal that three interlayer coupling factors, which are the two-layer relative spreading speed, the interlayer coupling strength and the two-layer degree correlation, significantly impact the spreading influence of a node on the contact layer. The suppression effect from the information layer makes the structural centrality on the contact layer fail to predict the spreading influence of nodes in the multiplex network. Then by mapping the coevolving spreading dynamics into percolation process and using the message-passing approach, we propose a method to calculate the size of the disease outbreaks from a single seed node, which can be used to estimate the nodes spreading influence in the coevolving dynamics. Our work provides insights on the importance of nodes in the multiplex network and gives a feasible framework to investigate influential spreaders in the asymmetrically coevolving dynamics.
can evolve simultaneously. For the information-driven adaptive process, susceptible (infected) individuals who have abilities to recognize the disease would break the links of their infected (susceptible) neighbors to prevent the epidemic from further spreading. Simulation results and numerical analyses based on the pairwise approach indicate that the information-driven adaptive process can not only slow down the speed of epidemic spreading, but can also diminish the epidemic prevalence at the final state significantly. In addition, the disease spreading and information diffusion pattern on the lattice give a visual representation about how the disease is trapped into an isolated field with the information-driven adaptive process. Furthermore, we perform the local bifurcation analysis on four types of dynamical regions, including healthy, oscillatory, bistable and endemic, to understand the evolution of the observed dynamical behaviors. This work may shed some lights on understanding how information affects human activities on responding to epidemic spreading.
Social interactions are stratified in multiple contexts and are subject to complex temporal dynamics. The systematic study of these two features of social systems has started only very recently mainly thanks to the development of multiplex and time-varying networks. However, these two advancements have progressed almost in parallel with very little overlap. Thus, the interplay between multiplexity and the temporal nature of connectivity patterns is poorly understood. Here, we aim to tackle this limitation by introducing a time-varying model of multiplex networks. We are interested in characterizing how these two properties affect contagion processes. To this end, we study SIS epidemic models unfolding at comparable time-scale respect to the evolution of the multiplex network. We study both analytically and numerically the epidemic threshold as a function of the overlap between, and the features of, each layer. We found that, the overlap between layers significantly reduces the epidemic threshold especially when the temporal activation patterns of overlapping nodes are positively correlated. Furthermore, when the average connectivity across layers is very different, the contagion dynamics are driven by the features of the more densely connected layer. Here, the epidemic threshold is equivalent to that of a single layered graph and the impact of the disease, in the layer driving the contagion, is independent of the overlap. However, this is not the case in the other layers where the spreading dynamics are sharply influenced by it. The results presented provide another step towards the characterization of the properties of real networks and their effects on contagion phenomena
In this paper, we study information transport in multiplex networks comprised of two coupled subnetworks. The upper subnetwork, called the logical layer, employs the shortest paths protocol to determine the logical paths for packets transmission, while the lower subnetwork acts as the physical layer, in which packets are delivered by the biased random walk mechanism characterized with a parameter $alpha$. Through simulation, we obtain the optimal $alpha$ corresponding to the maximum network lifetime and the maximum number of the arrival packets. Assortative coupling is better than the random coupling and the disassortative coupling, since it achieves much better transmission performances. Generally, the more homogeneous the lower subnetwork, the better the transmission performances are, which is opposite for the upper subnetwork. Finally, we propose an attack centrality for nodes based on the topological information of both subnetworks, and further investigate the transmission performances under targeted attacks. Our work helps to understand the spreading and robustness issues of multiplex networks and provides some clues about the designing of more efficient and robust routing architectures in communication systems.
How to identify influential nodes in social networks is of theoretical significance, which relates to how to prevent epidemic spreading or cascading failure, how to accelerate information diffusion, and so on. In this Letter, we make an attempt to find emph{effective multiple spreaders} in complex networks by generalizing the idea of the coloring problem in graph theory to complex networks. In our method, each node in a network is colored by one kind of color and nodes with the same color are sorted into an independent set. Then, for a given centrality index, the nodes with the highest centrality in an independent set are chosen as multiple spreaders. Comparing this approach with the traditional method, in which nodes with the highest centrality from the emph{entire} network perspective are chosen, we find that our method is more effective in accelerating the spreading process and maximizing the spreading coverage than the traditional method, no matter in network models or in real social networks. Meanwhile, the low computational complexity of the coloring algorithm guarantees the potential applications of our method.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا