Do you want to publish a course? Click here

Information transport in multiplex networks

311   0   0.0 ( 0 )
 Added by Cunlai Pu
 Publication date 2015
and research's language is English




Ask ChatGPT about the research

In this paper, we study information transport in multiplex networks comprised of two coupled subnetworks. The upper subnetwork, called the logical layer, employs the shortest paths protocol to determine the logical paths for packets transmission, while the lower subnetwork acts as the physical layer, in which packets are delivered by the biased random walk mechanism characterized with a parameter $alpha$. Through simulation, we obtain the optimal $alpha$ corresponding to the maximum network lifetime and the maximum number of the arrival packets. Assortative coupling is better than the random coupling and the disassortative coupling, since it achieves much better transmission performances. Generally, the more homogeneous the lower subnetwork, the better the transmission performances are, which is opposite for the upper subnetwork. Finally, we propose an attack centrality for nodes based on the topological information of both subnetworks, and further investigate the transmission performances under targeted attacks. Our work helps to understand the spreading and robustness issues of multiplex networks and provides some clues about the designing of more efficient and robust routing architectures in communication systems.



rate research

Read More

96 - Qi Zeng , Ying Liu , Ming Tang 2021
Identifying super-spreaders in epidemics is important to suppress the spreading of disease especially when the medical resource is limited.In the modern society, the information on epidemics transmits swiftly through various communication channels which contributes much to the suppression of epidemics. Here we study on the identification of super-spreaders in the information-disease coupled spreading dynamics. Firstly, we find that the centralities in physical contact layer are no longer effective to identify super-spreaders in epidemics, which is due to the suppression effects from the information spreading. Then by considering the structural and dynamical couplings between the communication layer and physical contact layer, we propose a centrality measure called coupling-sensitive centrality to identify super-spreaders in disease spreading. Simulation results on synthesized and real-world multiplex networks show that the proposed measure is not only much more accurate than centralities on the single network, but also outperforms two typical multilayer centralities in identifying super-spreaders. These findings imply that considering the structural and dynamical couplings between layers is very necessary in identifying the key roles in the coupled multilayer systems.
Although there is always an interplay between the dynamics of information diffusion and disease spreading, the empirical research on the systemic coevolution mechanisms connecting these two spreading dynamics is still lacking. Here we investigate the coevolution mechanisms and dynamics between information and disease spreading by utilizing real data and a proposed spreading model on multiplex network. Our empirical analysis finds asymmetrical interactions between the information and disease spreading dynamics. Our results obtained from both the theoretical framework and extensive stochastic numerical simulations suggest that an information outbreak can be triggered in a communication network by its own spreading dynamics or by a disease outbreak on a contact network, but that the disease threshold is not affected by information spreading. Our key finding is that there is an optimal information transmission rate that markedly suppresses the disease spreading. We find that the time evolution of the dynamics in the proposed model qualitatively agrees with the real-world spreading processes at the optimal information transmission rate.
151 - Kyu-Min Lee , K.-I. Goh , 2011
We introduce the sandpile model on multiplex networks with more than one type of edge and investigate its scaling and dynamical behaviors. We find that the introduction of multiplexity does not alter the scaling behavior of avalanche dynamics; the system is critical with an asymptotic power-law avalanche size distribution with an exponent $tau = 3/2$ on duplex random networks. The detailed cascade dynamics, however, is affected by the multiplex coupling. For example, higher-degree nodes such as hubs in scale-free networks fail more often in the multiplex dynamics than in the simplex network counterpart in which different types of edges are simply aggregated. Our results suggest that multiplex modeling would be necessary in order to gain a better understanding of cascading failure phenomena of real-world multiplex complex systems, such as the global economic crisis.
We develop a theoretical framework for the study of epidemic-like social contagion in large scale social systems. We consider the most general setting in which different communication platforms or categories form multiplex networks. Specifically, we propose a contact-based information spreading model, and show that the critical point of the multiplex system associated to the active phase is determined by the layer whose contact probability matrix has the largest eigenvalue. The framework is applied to a number of different situations, including a real multiplex system. Finally, we also show that when the system through which information is disseminating is inherently multiplex, working with the graph that results from the aggregation of the different layers is flawed.
Real networks often form interacting parts of larger and more complex systems. Examples can be found in different domains, ranging from the Internet to structural and functional brain networks. Here, we show that these multiplex systems are not random combinations of single network layers. Instead, they are organized in specific ways dictated by hidden geometric correlations between the individual layers. We find that these correlations are strong in different real multiplexes, and form a key framework for answering many important questions. Specifically, we show that these geometric correlations facilitate: (i) the definition and detection of multidimensional communities, which are sets of nodes that are simultaneously similar in multiple layers; (ii) accurate trans-layer link prediction, where connections in one layer can be predicted by observing the hidden geometric space of another layer; and (iii) efficient targeted navigation in the multilayer system using only local knowledge, which outperforms navigation in the single layers only if the geometric correlations are sufficiently strong. Our findings uncover fundamental organizing principles behind real multiplexes and can have important applications in diverse domains.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا