Do you want to publish a course? Click here

Non-adiabatic Strong Field Ionization of Atomic Hydrogen

224   0   0.0 ( 0 )
 Added by Daniel Trabert
 Publication date 2021
  fields Physics
and research's language is English




Ask ChatGPT about the research

We present experimental data on the non-adiabatic strong field ionization of atomic hydrogen using elliptically polarized femtosecond laser pulses at a central wavelength of 390 nm. Our measured results are in very good agreement with a numerical solution of the time-dependent Schrodinger equation (TDSE). Experiment and TDSE show four above-threshold ionization (ATI) peaks in the electrons energy spectrum. The most probable emission angle (also known as attoclock-offset angle or streaking angle) is found to increase with energy, a trend that is opposite to standard predictions based on Coulomb interaction with the ion. We show that this increase of deflection-angle can be explained by a model that includes non-adiabatic corrections of the initial momentum distribution at the tunnel exit and non-adiabatic corrections of the tunnel exit position itself.



rate research

Read More

Hartree-Fock atom in a strong electric static field is considered. It is demonstrated that exchange between outer and inner electrons, taken into account by the so-called Fock term affects strongly the long-range behavior of the inner electron wave function. As a result, it dramatically increases its probability to be ionized. A simple model is analyzed demonstrating that the decay probability, compared to the case of a local (Hartree) atomic potential, increases by many orders of magnitude. As a result of such increase, the ratio of inner to outer electrons ionization probability became not too small. It is essential that the effect of exchange upon probability of inner electron ionization by strong electric field is proportional to the square of the number of outer electrons. It signals that in clusters the inner electron ionization by strong field, the very fact of which is manifested by e.g. high energy quanta emission, has to be essentially increased as compared to this process in gaseous atomic objects.
89 - S. Eckart , D. Trabert , J. Rist 2021
Molecules are many body systems with a substantial amount of entanglement between their electrons. Is there a way to break the molecular bond of a diatomic molecule and obtain two atoms in their ground state which are still entangled and form a Bell-like state? We present a scheme that allows for the preparation of such entangled atomic states from single oxygen molecules on femtosecond time scales. The two neutral oxygen atoms are entangled in the magnetic quantum number of their valence electrons. In a time-delayed probe step, we employ non-adiabatic tunnel ionization, which is a magnetic quantum number-sensitive mechanism. We then investigate correlations by comparing single and double ionization probabilities of the Bell-like state. The experimental results agree with the predictions for an entangled state.
We present the first experimental data on strong-field ionization of atomic hydrogen by few-cycle laser pulses. We obtain quantitative agreement at the 10% level between the data and an {it ab initio} simulation over a wide range of laser intensities and electron energies.
The problem of photoionization of atomic hydrogen in a white-dwarf-strength magnetic field is revisited to understand the existing discrepancies in the positive-energy spectra obtained by a variety of theoretical approaches reported in the literature. Oscillator strengths for photoionization are calculated with the adiabatic-basis-expansion method developed by Mota-Furtado and OMahony [Phys. Rev. A {bf 76}, 053405 (2007)]. A comparative study is performed between the adiabatic-basis-expansion method and our previously developed coupled-channel theory [Phys. Rev. A {bf 94}, 033422 (2016)]. A detailed analysis of the positive-energy spectra obtained here and those from other theoretical approaches shows that the adiabatic-basis-expansion method can produce more accurate positive-energy spectra than other reported approaches for low field strengths.
80 - Igor Bray 1998
The convergent close-coupling method is applied to the calculation of fully differential cross sections for ionization of atomic hydrogen by 15.6 eV electrons. We find that even at this low energy the method is able to yield predictive results with small uncertainty. As a consequence we suspect that the experimental normalization at this energy is approximately a factor of two too high.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا