Do you want to publish a course? Click here

Ultrafast preparation and strong-field ionization of an atomic Bell-like state

90   0   0.0 ( 0 )
 Added by Sebastian Eckart
 Publication date 2021
  fields Physics
and research's language is English




Ask ChatGPT about the research

Molecules are many body systems with a substantial amount of entanglement between their electrons. Is there a way to break the molecular bond of a diatomic molecule and obtain two atoms in their ground state which are still entangled and form a Bell-like state? We present a scheme that allows for the preparation of such entangled atomic states from single oxygen molecules on femtosecond time scales. The two neutral oxygen atoms are entangled in the magnetic quantum number of their valence electrons. In a time-delayed probe step, we employ non-adiabatic tunnel ionization, which is a magnetic quantum number-sensitive mechanism. We then investigate correlations by comparing single and double ionization probabilities of the Bell-like state. The experimental results agree with the predictions for an entangled state.



rate research

Read More

Hartree-Fock atom in a strong electric static field is considered. It is demonstrated that exchange between outer and inner electrons, taken into account by the so-called Fock term affects strongly the long-range behavior of the inner electron wave function. As a result, it dramatically increases its probability to be ionized. A simple model is analyzed demonstrating that the decay probability, compared to the case of a local (Hartree) atomic potential, increases by many orders of magnitude. As a result of such increase, the ratio of inner to outer electrons ionization probability became not too small. It is essential that the effect of exchange upon probability of inner electron ionization by strong electric field is proportional to the square of the number of outer electrons. It signals that in clusters the inner electron ionization by strong field, the very fact of which is manifested by e.g. high energy quanta emission, has to be essentially increased as compared to this process in gaseous atomic objects.
Modern intense ultrafast pulsed lasers generate an electric field of sufficient strength to permit tunnel ionization of the valence electrons in atoms. This process is usually treated as a rapid succession of isolated events, in which the states of the remaining electrons are neglected. Such electronic interactions are predicted to be weak, the exception being recollision excitation and ionization caused by linearly-polarized radiation. In contrast, it has recently been suggested that intense field ionization may be accompanied by a two-stage `shake-up reaction. Here we report a unique combination of experimental techniques that enables us to accurately measure the tunnel ionization probability for argon exposed to 50 femtosecond laser pulses. Most significantly for the current study, this measurement is independent of the optical focal geometry, equivalent to a homogenous electric field. Furthermore, circularly-polarized radiation negates recollision. The present measurements indicate that tunnel ionization results in simultaneous excitation of one or more remaining electrons through shake-up. From an atomic physics standpoint, it may be possible to induce ionization from specific states, and will influence the development of coherent attosecond XUV radiation sources. Such pulses have vital scientific and economic potential in areas such as high-resolution imaging of in-vivo cells and nanoscale XUV lithography.
223 - Daniel Trabert 2021
We present experimental data on the non-adiabatic strong field ionization of atomic hydrogen using elliptically polarized femtosecond laser pulses at a central wavelength of 390 nm. Our measured results are in very good agreement with a numerical solution of the time-dependent Schrodinger equation (TDSE). Experiment and TDSE show four above-threshold ionization (ATI) peaks in the electrons energy spectrum. The most probable emission angle (also known as attoclock-offset angle or streaking angle) is found to increase with energy, a trend that is opposite to standard predictions based on Coulomb interaction with the ion. We show that this increase of deflection-angle can be explained by a model that includes non-adiabatic corrections of the initial momentum distribution at the tunnel exit and non-adiabatic corrections of the tunnel exit position itself.
We demonstrate single qubit operations on a trapped atom hyperfine qubit using a single ultrafast pulse from a mode-locked laser. We shape the pulse from the laser and perform a pi rotation of the qubit in less than 50 ps with a population transfer exceeding 99% and negligible effects from spontaneous emission or ac Stark shifts. The gate time is significantly shorter than the period of atomic motion in the trap (Rabi frequency / trap frequency > 10000), demonstrating that this interaction takes place deep within the strong excitation regime.
Aiming at the investigation of above-threshold ionization in super-strong laser fields with highly charged ions, we develop a Coulomb-corrected strong field approximation (SFA). The influence of the Coulomb potential of the atomic core on the ionized electron dynamics in the continuum is taken into account via the eikonal approximation, treating the Coulomb potential perturbatively in the phase of the quasi-classical wave function of the continuum electron. In this paper the formalism of the Coulomb-corrected SFA for the nonrelativistic regime is discussed employing velocity and length gauge. Direct ionization of a hydrogen-like system in a strong linearly polarized laser field is considered. The relation of the results in the different gauges to the Perelomov-Popov-Terentev imaginary-time method is discussed.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا