We compare the homological support and tensor triangular support for `big objects in a rigidly-compactly generated tensor triangulated category. We prove that the comparison map from the homological spectrum to the tensor triangular spectrum is a bijection and that the two notions of support coincide whenever the category is stratified, extending work of Balmer. Moreover, we clarify the relations between salient properties of support functions and exhibit counter-examples highlighting the differences between homological and tensor triangular support.
We systematically develop a theory of stratification in the context of tensor triangular geometry and apply it to classify the localizing tensor-ideals of certain categories of spectral $G$-Mackey functors for all finite groups $G$. Our theory of stratification is based on the approach of Stevenson which uses the Balmer-Favi notion of big support for tensor-triangulated categories whose Balmer spectrum is weakly noetherian. We clarify the role of the local-to-global principle and establish that the Balmer-Favi notion of support provides the universal approach to weakly noetherian stratification. This provides a uniform new perspective on existing classifications in the literature and clarifies the relation with the theory of Benson-Iyengar-Krause. Our systematic development of this approach to stratification, involving a reduction to local categories and the ability to pass through finite {e}tale extensions, may be of independent interest. Moreover, we strengthen the relationship between stratification and the telescope conjecture. The starting point for our equivariant applications is the recent computation by Patchkoria-Sanders-Wimmer of the Balmer spectrum of the category of derived Mackey functors, which was found to capture precisely the height $0$ and height $infty$ chromatic layers of the spectrum of the equivariant stable homotopy category. We similarly study the Balmer spectrum of the category of $E(n)$-local spectral Mackey functors noting that it bijects onto the height $le n$ chromatic layers of the spectrum of the equivariant stable homotopy category; conjecturally the topologies coincide. Despite our incomplete knowledge of the topology of the Balmer spectrum, we are able to completely classify the localizing tensor-ideals of these categories of spectral Mackey functors.
We develop some aspects of the homological algebra of persistence modules, in both the one-parameter and multi-parameter settings, considered as either sheaves or graded modules. The two theories are different. We consider the graded module and sheaf tensor product and Hom bifunctors as well as their derived functors, Tor and Ext, and give explicit computations for interval modules. We give a classification of injective, projective, and flat interval modules. We state Kunneth theorems and universal coefficient theorems for the homology and cohomology of chain complexes of persistence modules in both the sheaf and graded modules settings and show how these theorems can be applied to persistence modules arising from filtered cell complexes. We also give a Gabriel-Popescu theorem for persistence modules. Finally, we examine categories enriched over persistence modules. We show that the graded module point of view produces a closed symmetric monoidal category that is enriched over itself.
Given a monoidal $infty$-category $C$ equipped with a monoidal recollement, we give a simple criterion for an object in $C$ to be dualizable in terms of the dualizability of each of its factors and a projection formula relating them. Predicated on this, we then characterize dualizability in any monoidally stratified $infty$-category in terms of stratumwise dualizability and a projection formula for the links. Using our criterion, we prove a 1-dimensional bordism hypothesis for symmetric monoidal recollements. Namely, we provide an algebraic enhancement of the 1-dimensional framed bordism $infty$-category that corepresents dualizable objects in symmetric monoidal recollements. We also give a number of examples and applications of our criterion drawn from algebra and homotopy theory, including equivariant and cyclotomic spectra and a multiplicative form of the Thom isomorphism.
We develop some aspects of the theory of derivators, pointed derivators, and stable derivators. As a main result, we show that the values of a stable derivator can be canonically endowed with the structure of a triangulated category. Moreover, the functors belonging to the stable derivator can be turned into exact functors with respect to these triangulated structures. Along the way, we give a simplification of the axioms of a pointed derivator and a reformulation of the base change axiom in terms of Grothendieck (op)fibration. Furthermore, we have a new proof that a combinatorial model category has an underlying derivator.
We extend some classical results - such as Quillens Theorem A, the Grothendieck construction, Thomasons Theorem and the characterisation of homotopically cofinal functors - from the homotopy theory of small categories to polynomial monads and their algebras. As an application we give a categorical proof of the Dwyer-Hess and Turchin results concerning the explicit double delooping of spaces of long knots.