No Arabic abstract
Given a monoidal $infty$-category $C$ equipped with a monoidal recollement, we give a simple criterion for an object in $C$ to be dualizable in terms of the dualizability of each of its factors and a projection formula relating them. Predicated on this, we then characterize dualizability in any monoidally stratified $infty$-category in terms of stratumwise dualizability and a projection formula for the links. Using our criterion, we prove a 1-dimensional bordism hypothesis for symmetric monoidal recollements. Namely, we provide an algebraic enhancement of the 1-dimensional framed bordism $infty$-category that corepresents dualizable objects in symmetric monoidal recollements. We also give a number of examples and applications of our criterion drawn from algebra and homotopy theory, including equivariant and cyclotomic spectra and a multiplicative form of the Thom isomorphism.
Given a suitable stable monoidal model category $mathscr{C}$ and a specialization closed subset $V$ of its Balmer spectrum one can produce a Tate square for decomposing objects into the part supported over $V$ and the part supported over $V^c$ spliced with the Tate object. Using this one can show that $mathscr{C}$ is Quillen equivalent to a model built from the data of local torsion objects, and the splicing data lies in a rather rich category. As an application, we promote the torsion model for the homotopy category of rational circle-equivariant spectra from [18] to a Quillen equivalence. In addition, a close analysis of the one step case highlights important features needed for general torsion models which we will return to in future work.
In this paper, we first provide an explicit procedure to glue complete hereditary cotorsion pairs along the recollement $(mathcal{A},mathcal{C},mathcal{B})$ of abelian categories with enough projective and injective objects. As a consequence, we investigate how to establish recollements of triangulated categories from recollements of abelian categories by using the theory of exact model structures. Finally, we give applications to contraderived categories, projective stable derived categories and stable categories of Gorenstein injective modules over an upper triangular matrix ring.
We study bordism groups and bordism homology theories based on pseudomanifolds and stratified pseudomanifolds. The main seam of the paper demonstrates that when we uses classes of spaces determined by local link properties, the stratified and unstratified bordism theories are identical; this includes the known examples of pseudomanifold bordism theories, such as bordism of Witt spaces and IP spaces. Along the way, we relate the stratified and unstratified points of view for describing various (stratified) pseudomanifold classes.
We compare the homological support and tensor triangular support for `big objects in a rigidly-compactly generated tensor triangulated category. We prove that the comparison map from the homological spectrum to the tensor triangular spectrum is a bijection and that the two notions of support coincide whenever the category is stratified, extending work of Balmer. Moreover, we clarify the relations between salient properties of support functions and exhibit counter-examples highlighting the differences between homological and tensor triangular support.
We show that a well behaved Noetherian, finite dimensional, stable, monoidal model category is equivalent to a model built from categories of modules over completed rings in an adelic fashion. For abelian groups this is based on the Hasse square, for chromatic homotopy theory this is based on the chromatic fracture square, and for rational torus-equivariant homotopy theory this is the model of Greenlees-Shipley arXiv:1101.2511.